Abstract
The CeO2 and CeCoO composite oxide catalysts with bimodal mesopore structures were prepared by hard-template method and used for ethanol complete oxidation in air. The physicochemicalphysicochemical properties of the prepared catalysts were characterized by XRD, BET, TEM, XPS, H2-TPR, and O2-TPD. The Co species can be dissolved into CeO2 lattice to form Ce–O–Co solid solution, which promotes reactive oxygen species to be formed on the prepared CeCoO oxide catalysts surface. The bimodal mesopore structures can be obtained by the used hard-template method, and the pore structures of the prepared CeCoO oxide catalysts can be affected by the introduction of Co species. The synergistic effects from bimodal mesopore structures and reactive oxygen species can effectively boost ethanol complete oxidation to final product CO2. The CeCo2 catalyst with Ce/Co mole ratio of 2.0 exhibites superior ethanol complete oxidation activity and service stability, the ethanol oxidation conversion and final oxidation product CO2 selectivity reached 99.8 % and 99.2 % at 200 °C, respectively. This work indicates that the bimodal mesoporous CeCoO solid solution composite oxide catalyst is a promising candidate for OVOCs oxidation elimination from air.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research is funded by Science and Technology Research Project of Chongqing Education Commission (KJQN202000806); Chongqing Natural Science Foundation Project (CSTB2022NSCQ-MSX0810).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Aguilera, D. A., A. Perez, R. Molina, and S. Moreno. 2011. “Cu–Mn and Co–mn Catalysts Synthesized from Hydrotalcites and Their Use in the Oxidation of VOCs.” Applied Catalysis B: Environmental 104: 144–50. https://doi.org/10.1016/j.apcatb.2011.02.019.Search in Google Scholar
Bai, B. Y., and J. H. Li. 2014. “Positive Effects of K+ Ions on Three–Dimensional Mesoporous Ag/Co3O4 Catalyst for HCHO Oxidation.” ACS Catalysis 4: 2753–62. https://doi.org/10.1021/cs5006663.Search in Google Scholar
Bai, B. Y., H. Arandiyan, and J. H. Li. 2013. “Comparison of the Performance for Oxidation of Formaldehyde on Nano–Co3O4, 2D–Co3O4, and 3D–Co3O4 Catalysts.” Applied Catalysis B: Environmental 142–143: 677–83. https://doi.org/10.1016/j.apcatb.2013.05.056.Search in Google Scholar
Bai, B. Y., J. H. Li, and J. Hao. 2015. “1D–MnO2, 2D–MnO2 and 3D–MnO2 for Low–Temperature Oxidation of Ethanol.” Applied Catalysis B: Environmental 164: 241–50. https://doi.org/10.1016/j.apcatb.2014.08.044.Search in Google Scholar
Campesi, M. A., N. J. Mariani, M. C. Pramparo, B. P. Barbero, L. E. Cadús, O. M. Martínez, and G. F. Barreto. 2011. “Combustion of Volatile Organic Compounds on a MnCu Catalyst, A Kinetic Study.” Catalysis Today 176: 225–8. https://doi.org/10.1016/j.cattod.2011.01.009.Search in Google Scholar
Chen, S., H. M. Xie, and G. L. Zhou. 2019. “Tuning the Pore Structure of Mesoporous Co3O4 Materials for Ethanol Oxidation to Acetaldehyde.” Ceramics International 45: 24609–17. https://doi.org/10.1016/j.ceramint.2019.08.190.Search in Google Scholar
Hu, C. Q., Q. S. Zhu, Z. Jiang, L. Chen, and R. F. Wu. 2009. “Catalytic Combustion of Dilute Acetone over Cu–Doped Ceria Catalysts.” Chemical Engineering Journal 152: 583–90. https://doi.org/10.1016/j.cej.2009.05.033.Search in Google Scholar
Jha, A., D. W. Jeong, Y. L. Lee, I. W. Nahb, and H. S. Roh. 2015. “Enhancing the Catalytic Performance of Cobalt Oxide by Doping on Ceria in the High Temperature Water–Gas Shift Reaction.” RSC Advances 5: 103023–9. https://doi.org/10.1039/c5ra22704f.Search in Google Scholar
Lan, H., G. L. Zhou, C. J. Luo, Y. R. Yu, H. M. Xie, and G. Z. Zhang. 2016. “High Efficiency CeCu Composite Oxide Catalysts Improved via Preparation Methods for Propyl Acetate Catalytic Combustion in Air.” International Journal of Chemical Reactor Engineering 14: 757–68. https://doi.org/10.1515/ijcre-2015-0085.Search in Google Scholar
Li, J. H., R. H. Wang, and J. M. Hao. 2010. “Role of Lattice Oxygen and Lewis Acid on Ethanol Oxidation over OMS–2 Catalyst.” Journal of Physical Chemistry C 114 (23): 10544–50. https://doi.org/10.1021/jp102779u.Search in Google Scholar
Li, H. F., G. Z. Lu, D. S. Qiao, Y. Q. Wang, Y. Guo, and Y. L. Guo. 2011a. “Catalytic Methane Combustion over Co3O4/CeO2, Composite Oxides Prepared by Modified Citrate Sol–Gel Method.” Catalysis Letters 141: 452–8. https://doi.org/10.1007/s10562-010-0513-y.Search in Google Scholar
Li, H. J., G. S. Qi, Tana, X. J. Zhang, X. M. Huang, W. Li, and W. J. Shen. 2011b. “Low-Temperature Oxidation of Ethanol over a Mn0.6Ce0.4O2, Mixed Oxide.” Applied Catalysis B: Environmental 103: 54–61. https://doi.org/10.1016/j.apcatb.2011.01.008.Search in Google Scholar
Li, T., X. H. Chen, W. J. Yang, and G. L. Zhou. 2018. “Controllable Synthesis and Properties of Nano–CeO2.” Journal of the Iranian Chemical Society 15: 2637–47. https://doi.org/10.1007/s13738-018-1452-6.Search in Google Scholar
Liu, H. R., S. Y. Xu, G. L. Zhou, G. C. Huang, S. Y. Huang, and K. Xiong. 2018. “CO2 Hydrogenation to Methane over Co/KIT-6 Catalyst, Effect of Reduction Temperature.” Chemical Engineering Journal 351: 65–73. https://doi.org/10.1016/j.cej.2018.06.087.Search in Google Scholar
Lu, A. H., and F. Schueth. 2006. “Nanocasting: A Versatile Strategy for Creating Nanostructured Porous Materials.” Advanced Materials 18: 1793–805. https://doi.org/10.1002/adma.200600148.Search in Google Scholar
Luo, J. Y., J. J. Zhang, and Y. Y. Xia. 2006. “Highly Electrochemical Reaction of Lithium in the Ordered Mesoporosus β–MnO2.” Chemistry of Materials 18: 5618–23. https://doi.org/10.1021/cm061458o.Search in Google Scholar
Luo, J. Y., M. Meng, X. Li, X. G. Li, Y. Q. Zha, T. D. Hu, Y. J. Xie, and J. Zhang. 2008. “Mesoporous Co3O4–CeO2, and Pd/Co3O4–CeO2, Catalysts, Synthesis, Characterization and Mechanistic Study of Their Catalytic Properties for Low-Temperature CO Oxidation.” Journal of Catalysis 254: 310–24. https://doi.org/10.1016/j.jcat.2008.01.007.Search in Google Scholar
Ma, C. Y., Z. Mu, C. He, P. Li, J. J. Li, and Z. P. Hao. 2011. “Catalytic Oxidation of Benzene over Nanostructured Porous Co3O4–CeO2 Composite Catalysts.” Journal of Environmental Sciences 23: 2078–86. https://doi.org/10.1016/s1001-0742(10)60674-2.Search in Google Scholar PubMed
McDonald, J. D., B. Zielinska, E. M. Fujita, J. C. Sagebiel, J. C. Chow, and J. G. Watson. 2000. “Fine Particle and Gaseous Emission Rates from Residential Wood Combustion.” Environmental Science & Technology 34: 2080–91. https://doi.org/10.1021/es9909632.Search in Google Scholar
Minicò, S., S. Scirè, C. Crisafulli, R. Maggiore, and S. Galvagno. 2000. “Catalytic Combustion of Volatile Organic Compounds on Gold/Iron Oxide Catalysts.” Applied Catalysis B: Environmental 28: 245–51. https://doi.org/10.1016/s0926-3373(00)00181-8.Search in Google Scholar
Morales, M. R., B. P. Barbero, and L. E. Cadús. 2006. “Total Oxidation of Ethanol and Propane over Mn–Cu Mixed Oxide Catalysts.” Applied Catalysis B: Environmental 67: 229–36. https://doi.org/10.1016/j.apcatb.2006.05.006.Search in Google Scholar
Morales, M. R., B. P. Barbero, and L. E. Cadús. 2007. “Combustion of Volatile Organic Compounds on Manganese Iron or Nickel Mixed Oxide Catalysts.” Applied Catalysis B: Environmental 74: 1–10. https://doi.org/10.1016/j.apcatb.2007.01.008.Search in Google Scholar
Morales, M. R., B. P. Barbero, and L. E. Cadús. 2008. “Evaluation and Characterization of Mn–Cu Mixed Oxide Catalysts for Ethanol Total Oxidation: Influence of Copper Content.” Fuel 87: 1177–86. https://doi.org/10.1016/j.fuel.2007.07.015.Search in Google Scholar
Natile, M. M., and A. Glisenti. 2005. “CoOx/CeO2 Nanocomposite Powders, Synthesis, Characterization, and Reactivity.” Chemistry of Materials 17: 3403–14. https://doi.org/10.1021/cm048748u.Search in Google Scholar
Nolan, M., S. C. Parker, and G. W. Watson. 2005. “The Electronic Structure of Oxygen Vacancy Defects at the Low Index Surfaces of Ceria.” Surface Science 595: 223–32. https://doi.org/10.1016/j.susc.2005.08.015.Search in Google Scholar
Qiao, D. S., G. Z. Lu, Y. Guo, Y. Q. Wang, and Y. L. Guo. 2010. “Effect of Water Vapor on the CO and CH4 Catalytic Oxidation over CeO2–MOx (M=Cu, Mn, Fe, Co, and Ni) Mixed Oxide.” Journal of Rare Earths 28: 742–6. https://doi.org/10.1016/s1002-0721(09)60192-7.Search in Google Scholar
Singh, H. B., M. Kanakidou, P. J. Crutzen, and D. J. Jacob. 1995. “High Concentrations and Photochemical Fate of Oxygenated Hydrocarbons in the Global Troposphere.” Nature 378: 50–4. https://doi.org/10.1038/378050a0.Search in Google Scholar
Sun, S. M., X. L. Zhao, H. Lu, Z. D. Zhang, J. J. Wei, and Y. Z. Yang. 2013. “Unusual Properties of Nanostructured Ce1–xCoxO2–Y, Ce1–xNixO2–Y and Ce1–(x+y)CoxNiyO2–Z, Structural Studies and Catalytic Activity.” CrystEngComm 15: 1370–6. https://doi.org/10.1039/c2ce26651b.Search in Google Scholar
Tan, X., H. Lan, H. M. Xie, G. L. Zhou, and Y. Jiang. 2017. “Role of Surface Oxygen Species of Mesoporous CeCu Oxide Catalyst in OVOCs Catalytic Combustion.” Journal of Environmental Chemical Engineering 5: 2068–76. https://doi.org/10.1016/j.jece.2017.03.033.Search in Google Scholar
Wang, C., C. H. Zhang, W. C. Hua, Y. L. Guo, G. Z. Lu, S. Gil, and A. Giroir-Fendler. 2017. “Catalytic Oxidation of Vinyl Chloride Emissions over Co–ce Composite Oxide Catalysts.” Chemical Engineering Journal 315: 392–402. https://doi.org/10.1016/j.cej.2017.01.007.Search in Google Scholar
Wu, T., and X. M. Wang. 2015. “Emission of Oxygenated Volatile Organic Compounds (OVOCs) during the Aerobic Decomposition of Orange Wastes.” Journal of Environmental Sciences 33: 69–77. https://doi.org/10.1016/j.jes.2015.01.006.Search in Google Scholar PubMed
Xia, D. P., Y. Chen, C. N. Li, C. D. Liu, and G. L. Zhou. 2018. “Carbon Dioxide Reforming of Methane to Syngas over Ordered Mesoporous Ni/KIT–6 Catalysts.” International Journal of Hydrogen Energy 43: 20488–99. https://doi.org/10.1016/j.ijhydene.2018.09.059.Search in Google Scholar
Xia, H. A., J. Huang, K. K. Cui, G. Z. Zhang, and H. M. Xie. 2021. “Toluene Oxidation Removal from Air over CoxOy/AC Catalyst.” Environmental Technology 44 (3): 371–80, https://doi.org/10.1080/09593330.2021.1972167.Search in Google Scholar PubMed
Xie, H. M., X. P. Zhao, G. L. Zhou, X. L. He, H. Lan, and Z. X. Jiang. 2016. “Investigating the Performance of CoxOy/activated Carbon Catalysts for Ethyl Acetate Catalytic Combustion.” Applied Surface Science 326: 119–23. https://doi.org/10.1016/j.apsusc.2014.11.109.Search in Google Scholar
Xie, H. M., Q. X. Du, H. Li, G. L. Zhou, S. M. Chen, Z. J. Jiao, and J. M. Ren. 2017. “CuO–CeO2 Catalyst for Catalytic Combustion of Volatile Aromatic Compounds.” Korean Journal of Chemical Engineering 34: 1944–51. https://doi.org/10.1007/s11814-017-0111-4.Search in Google Scholar
Xie, H. M., H. Lan, X. Tan, W. Wang, L. B. Yan, X. C. Liu, and G. L. Zhou. 2019. “High–efficient Oxidation Removal of Ethanol from Air over Ordered Mesoporous Co3O4/KIT–6 Catalyst.” Journal of Environmental Chemical Engineering 7: 103480. https://doi.org/10.1016/j.jece.2019.103480.Search in Google Scholar
Xie, H. M., J. Zeng, and G. L. Zhou. 2020. “CeCu Composite Oxide for Chlorophenol Effective Removal by Heterogeneous Catalytic Wet Peroxide Oxidation.” Environmental Science & Pollution Research 27: 846–60. https://doi.org/10.1007/s11356-019-07042-5.Search in Google Scholar PubMed
Xu, S. Y., F. Q. Xie, H. M. Xie, G. L. Zhou, and X. Y. Liu. 2019. “Effect of Structure and Composition on the CO2 Hydrogenation Properties over Bimodal Mesoporous CeCo Composite Catalyst.” Chemical Engineering Journal 375: 122023. https://doi.org/10.1016/j.cej.2019.122023.Search in Google Scholar
Xue, L., H. He, C. Liu, C. B. Zhang, and B. Zhang. 2009. “Promotion Effects and Mechanism of Alkali Metals and Alkaline Earth Metals on Cobalt–Cerium Composite Oxide Catalysts for N2O Decomposition.” Environmental Science & Technology 43: 890–5. https://doi.org/10.1021/es801867y.Search in Google Scholar PubMed
Yang, P., S. S. Yang, Z. N. Shi, Z. H. Meng, and R. X. Zhou. 2015. “Deep Oxidation of Chlorinated VOCs over CeO2–Based Transition Metal Mixed Oxide Catalysts.” Applied Catalysis B: Environmental 162: 227–35. https://doi.org/10.1016/j.apcatb.2014.06.048.Search in Google Scholar
Yang, W. J., C. Deng, J. H. Zhou, M. Y. Zhou, Z. H. Wang, and K. F. Cen. 2016. “Mesoscale Combustion of Ethanol and Dimethyl Ether over Pt/ZSM–5, Differences in Combustion Characteristics and Catalyst Deactivation.” Fuel 165: 1–9. https://doi.org/10.1016/j.fuel.2015.10.016.Search in Google Scholar
Yao, X. J., F. Gao, Q. Yu, L. Qi, C. J. Tang, L. Dong, and Y. Chen. 2013. “NO Reduction by CO over CuO–CeO2 Catalysts, Effect of Preparation Methods.” Catalysis Science & Technology 3: 1355–66. https://doi.org/10.1039/c3cy20805b.Search in Google Scholar
Zhang, Y., M. Koike, and N. Tsubaki. 2005. “Preparation of Alumina–Silica Bimodal Pore Catalysts for Fischer–Tropsch Synthesis.” Catalysis Letters 99: 193–8. https://doi.org/10.1007/s10562-005-2118-4.Search in Google Scholar
Zhou, G. L., H. Lan, X. Q. Yang, Q. X. Du, H. M. Xie, and M. Fu. 2013. “Effects of the Structure of Ce–Cu Catalysts on the Catalytic Combustion of Toluene in Air.” Ceramics International 39: 3677–83. https://doi.org/10.1016/j.ceramint.2012.10.199.Search in Google Scholar
Zhou, G. L., B. Gui, H. M. Xie, F. Yang, Y. Chen, S. M. Chen, and X. X. Zheng. 2014a. “Influence of CeO2 Morphology on the Catalytic Oxidation of Ethanol in Air.” Journal of Industrial and Engineering Chemistry 20: 160–5. https://doi.org/10.1016/j.jiec.2013.04.012.Search in Google Scholar
Zhou, G. L., H. Lan, T. T. Gao, and H. M. Xie. 2014b. “Influence of Ce/Cu Ratio on the Performance of Ordered Mesoporous CeCu Composite Oxide Catalysts.” Chemical Engineering Journal 246: 53–63. https://doi.org/10.1016/j.cej.2014.02.059.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Articles
- Methylene blue removal from aqueous solution using modified Met-SWCNT-Ag nanoparticles: optimization using RSM-CCD
- Leaching behavior of germanium presented in different phases from zinc oxide dust under atmospheric acid leaching conditions
- TiO2 P25 and Kronos vlp 7000 materials activated by simulated solar light for atrazine degradation
- Numerical investigations on hydrothermal flame characteristics of water-cooled hydrothermal burner
- Moving bed biofilm reactor combined with an activated carbon filter for biological nitrate removal
- Preparation of bimodal mesoporous CoCe composite oxide for ethanol complete oxidation in air
- Hydrocracking of hydrotreated light cycle oil for optimizing BTEX production: a simple kinetic model
- Hydrodynamic comparison of different geometries of square cross-section airlift bioreactor using computational fluid dynamics
- Influence of different influence parameters on mixing characteristics of silicon particles in cassette
Articles in the same Issue
- Frontmatter
- Articles
- Methylene blue removal from aqueous solution using modified Met-SWCNT-Ag nanoparticles: optimization using RSM-CCD
- Leaching behavior of germanium presented in different phases from zinc oxide dust under atmospheric acid leaching conditions
- TiO2 P25 and Kronos vlp 7000 materials activated by simulated solar light for atrazine degradation
- Numerical investigations on hydrothermal flame characteristics of water-cooled hydrothermal burner
- Moving bed biofilm reactor combined with an activated carbon filter for biological nitrate removal
- Preparation of bimodal mesoporous CoCe composite oxide for ethanol complete oxidation in air
- Hydrocracking of hydrotreated light cycle oil for optimizing BTEX production: a simple kinetic model
- Hydrodynamic comparison of different geometries of square cross-section airlift bioreactor using computational fluid dynamics
- Influence of different influence parameters on mixing characteristics of silicon particles in cassette