Home Flow Field Analysis within Industrial Quenching Tanks Operated with Aqueous Polymer Solutions in the Steel Industry
Article
Licensed
Unlicensed Requires Authentication

Flow Field Analysis within Industrial Quenching Tanks Operated with Aqueous Polymer Solutions in the Steel Industry

  • M. R. Barbieri EMAIL logo , Th. Lübben , G. Ebner , L. Buss , N. Riefler and U. Fritsching
Published/Copyright: October 24, 2024

Abstract

Quenching with polymer solutions for steel heat treatment offers adjustable performance and improved ecological impact compared to conventional water or oil quenching. The submersion cooling operation poses challenges due to the intense vapor/polymer film collapse on the component surface, potentially destabilizing batch components. Therefore, controlled recirculation is critical to preventing tank and specimen damage during cooling and ensuring effective steel hardening. However, flow structure analysis is often overlooked and disregarded in industrial tank design. Thus, this study evaluates the tank geometries of two partner industries to determine if they provide the necessary homogeneous flow for optimal quenching. The analysis combines experimental velocity measurements with a numerical model, with the identification of different flow intensity regions being the main outcome of this work. The results suggest that geometric modifications could improve flow recirculation, enhancing quenching performance.

Kurzfassung

Das Abschrecken mit wässrigen Polymerlösungen für die Wärmebehandlung von Stahl bietet im Vergleich zum herkömmlichen Abschrecken mit Wasser oder Öl eine einstellbare Leistung und eine verbesserte Umweltverträglichkeit. Die Tauchkühlung stellt aufgrund des starken Zusammenbruchs des Dampf-/Polymerfilms auf der Bauteiloberfläche eine Herausforderung dar, da sie zu einer Destabilisierung von Chargenkomponenten führen kann. Eine kontrollierte Strömungsführung in den Abschrecktanks ist von entscheidender Bedeutung, um Beschädigungen der Bauteile und des Tanks während des Kühlvorgangs zu verhindern und eine effektive Stahlhärtung zu gewährleisten. Allerdings wird die Strömungsstrukturanalyse nicht häufig angewendet und bei der Konstruktion von Industrietanks in der Regel nicht berücksichtigt. Daher werden in dieser Studie die Strömungsanalysen für Tankgeometrien bei zwei Industriepartnern untersucht, um festzustellen, ob sie die für eine optimale Abschreckung erforderliche homogene Strömung bieten. Die Analyse kombiniert experimentelle Geschwindigkeitsmessungen mit einem numerischen Strömungsmodell. Die Identifikation verschiedener Strömungsintensitätsbereiche in den Abschrecktanks ist das Hauptergebnis dieser Arbeit. Die Ergebnisse deuten darauf hin, dass geometrische Änderungen an den Abschreckvorrichtungen die Strömungsrezirkulation verbessern und die Abschreckleistung erhöhen könnten.

Acknowledgments

The authors acknowledge Dr. rer. nat. Friedhelm Frerichs from the Leibniz-IWT in Bremen for the support during the measurement campaigns. This work is funded by the Federal Ministry of Economics and Climate Protection (BMWK) as part of the project “Polymer Quenching II” under the funding number AiF 22025 N, based on a resolution of the German Bundestag via the German Federation of Industrial Research Associations (AiF). The authors thank the BMWK and the AiF for their financial support. Furthermore, the authors would like to thank the members of the project accompanying working group for their valuable support of this project.

References

1 Bejan, A.; Kraus, A. D. (eds.): Heat Transfer Handbook. 1. Aufl., John Wiley & Sons, Inc., Hoboken, USA, 2003. – ISBN: 978-0-471-39015-2Search in Google Scholar

2 Samuel, A.; Prabhu, K. N.: Residual Stress and Distortion during Quench Hardening of Steels: A Review. J. Mater. Eng. Perform. 31 (2022) 7, pp. 5161–5188, 10.1007/s11665-022-06667-xSearch in Google Scholar

3 Odusote, J. K.; Ajiboye, T. K.; Rabiu, A. B.: Evaluation of Mechanical Properties of Medium Carbon Steel Quenched in Water and Oil. J. Miner. Mater. Charact. Eng. 11 (2012) 9, pp. 859–862, 10.4236/jmmce.2012.119079Search in Google Scholar

4 Totten, G. E. (ed.): Steel heat treatment – Metallurgy and Technologies. Steel Heat Treatment Handbook, 2nd ed., CRC Press Inc., Boca Raton, USA, 2007. – ISBN: 978084938455410.1201/NOF0849384523Search in Google Scholar

5 Magee, C. L.; Davies, R. G.: On the volume expansion accompanying the F. C. C. to B. C.C transformation in ferrous alloys. Acta Metall. 20 (1972) 8, pp, 1031–1043, 10.1016/0001-6160(72)90137-XSearch in Google Scholar

6 Neves, F. O.; Oliviera, T. L. L.; Braga, D. U.; Silva, A. S. C. d.: Influence of Heat Treatment on Residual Stress in Cold-Forged Parts. Adv. Mater. Sci. Eng. (2014), 658679, 10.1155/2014/658679, open accessSearch in Google Scholar

7 Narayan, N. M.; Landgraf, P. M.; Lampke, T.; Fritsching, U.: Artificial Intelligence Modeling of the Heterogeneous Gas Quenching Process for Steel Batches Based on Numerical Simulations and Experiments. Dynamics 4 (2024) 2, pp. 425–456, 10.3390/dynamics4020023, open accessSearch in Google Scholar

8 Lior, N.: The cooling process in gas quenching. J. Mater. Process. Tech. 155–156 (2004), pp. 1881–1888, 10.1016/j.jmatprotec.2004.04.279Search in Google Scholar

9 Narayan, N. M.; Fritsching, U.: Investigation of the hydrodynamic and thermodynamic behavior of the liquid jet quenching process. Heat Mass Transfer 60 (2024) 4, pp. 627–650, 10.1007/s00231-024-03447-2Search in Google Scholar

10 Wassenberg, J. R.; Stephan, P.; Gambaryan-Roisman, T.: The influence of splattering on the development of the wall film after horizontal jet impingement onto a vertical wall. Exp. Fluids 60 (2019) 11, 173, 10.1007/s00348-019-2810-6Search in Google Scholar

11 Tseng, A. A.; Raudensky, M.; Lee, T.-W.: Liquid Sprays for Heat Transfer Enhancements: A Review. Heat Transfer Eng. 37 (2016) 16, pp. 1401–1417, 10.1080/01457632.2015.1136168Search in Google Scholar

12 Panda, A.; Pati, A. R.; Pradhan, S.; Saha, B.; Kumar, A.; Mohapatra, S. S.: High mass flux air atomized spray with subcooled water: A novel methodology to enhance the heat transfer rate in film boiling regime. Int. J. Heat Mass Transfer 120 (2018), pp. 1287–1304, 10.1016/j.ijheatmasstransfer.2017.12.051Search in Google Scholar

13 Ramesh, G.; Narayan Prabhu, K.: Effect of Polymer Concentration on Wetting and Cooling Performance During Immersion Quenching. Metall. Mater. Trans. B 47 (2015) 2, pp. 859–881, 10.1007/s11663-015-0541-5Search in Google Scholar

14 Stephan, P.; Kabelac, S.; Kind, M.; Mewes, D.; Schaber, K.; Wetzel, T.: VDI-Wärmeatlas – Fachlicher Träger VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen. Springer Reference Technik, 12th ed., Springer Vieweg, Berlin, 2019, 10.1007/978-3-662-52989-8Search in Google Scholar

15 Kim, H. K.; Oh, S. I.: Evaluation of heat transfer coefficient during heat treatment by inverse analysis. J. Mater. Process. Tech. 112 (2001) 2–3, pp. 157–165, 10.1016/S0924-0136(00)00877-3Search in Google Scholar

16 Buczek, A.; Telejko, T.: Inverse determination of boundary conditions during boiling water heat transfer in quenching operation. J. Mater. Process. Tech. 155–156 (2004), pp. 1324–1329, 10.1016/j.jmatprotec.2004.04.192Search in Google Scholar

17 Buczek, A.; Telejko, T.: Investigation of heat transfer coefficient during quenching in various cooling agents. Int. J. Heat Fluid Flow 44 (2013), pp. 358–364, 10.1016/j.ijheatfluidflow.2013.07.004Search in Google Scholar

18 Jiang, B.; Wu, M.; Zhang, M.; Zhao, F.; Zhao, Z.; Liu, Y.: Microstructural characterization, strengthening and toughening mechanisms of a quenched and tempered steel: Effect of heat treatment parameters. Mater. Sci. Eng.: A 707 (2017), pp. 306–314, 10.1016/j.msea.2017.09.062Search in Google Scholar

19 Totten, G. E.; Bates, C. E.; Clinton, N. A.: Handbook of quenchants and quenching technology. ASM International, Materials Park, USA, 2011. – ISBN: 9780871704481Search in Google Scholar

20 Chun-Huai, C.: Investigation of Influence Factors on Cooling Rate of PVP Quenchant. Proc. 4th Int. Conf. Quenching and the Control of Distortion, 20.–23.05.2003, Beijing, China, CHTS, 2003, pp. 253–256Search in Google Scholar

21 Lübben, T.; Frerichs, F.: Quenching with Aqueous Polymer Solutions. HTM J. Heat. Treatm. Mat. 78 (2023) 3, pp. 121–140, 10.1515/htm-2022-1045Search in Google Scholar

22 Kozlov, N.; Keßler, O.: Influencing on liquid quenching by surface structuring. Int. J. Therm. Sci. 101 (2016), pp. 133–142, 10.1016/j.ijthermalsci.2015.10.025Search in Google Scholar

23 Waldeck, S.; Castens, M.; Riefler, N.; Frerichs, F.; Lübben, T.; Fritsching, U.: Mechanisms and Process Control for Quenching with Aqueous Polymer Solutions. HTM J. Heat Treatm. Mater. 74 (2019) 4, pp. 238–256, 10.3139/105.110387Search in Google Scholar

24 Vieira, E. d. R.; Medeiros, J. L. B.; Biehl, L. V.; Costa, V. M.; Nunes, L. d. S.; Bicharra, E. H.; Silva, M. S. d.: Investigation on the capacity of PVP polymer in tool steel cooling in the quenching process. Brazilian J. Dev. 6 (2020) 7, pp. 50199–50206, 10.34117/bjdv6n7-610Search in Google Scholar

25 Lübben, T.; Frerichs, F.; Barbieri, M.; Buss, L.; Riefler, N.; Fritsching, U.: Quenching of Disk-Shaped Components in Aqueous Polymer Solutions. HTM J. Heat Treatm. Mater. 79 (2024) 2, pp. 53–80, 10.1515/htm-2024-0006Search in Google Scholar

26 ANSYS: Fluent Theory Guide. ANSYS Inc, Canonsburg, USA, 2022Search in Google Scholar

27 Menter, F. R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32 (1994) 8, pp. 1598–1605, 10.2514/3.12149Search in Google Scholar

Published Online: 2024-10-24
Published in Print: 2024-10-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 15.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/htm-2024-0022/html
Scroll to top button