Abstract
Quenching and partitioning (Q&P) is a heat treatment used to adjust the retained austenite content in the microstructure. Such heat treatment is used mainly for low-alloyed steels. However, the partitioning effect has an influence on higher alloyed steels also, such as martensitic stainless steels. The typical heat treatment for these steels is quenching and tempering (Q&T). In large-scale tools the cooling rate in the inner area is lower than in the peripheral area, and the central region of the tool might not be cooled down completely to room temperature before the tempering step takes place, resulting in a Q&P instead of a Q&T treatment.
This article deals with these effects through dilatometric investigation of steels X40Cr14, “X25CrN13” and “X50CrMoN17-1” at two different austenitizing temperatures and two cooling rates, with a variation of the quenching temperature. It was found that partitioning takes place even at slow cooling rates. However, due to partial pearlite formation and pre-carbide precipitation/coarsening, the retained austenite content may be lower than with rapid cooling. Further, autopartitioning was also detected at slow cooling rates.
Kurzfassung
Quenching and Partitioning (Q&P) ist eine Wärmebehandlung zur Einstellung des Restaustenitgehalts im Gefüge. Eine solche Wärmebehandlung wird hauptsächlich bei niedrig legierten Stählen angewandt. Der Partitioningseffekt wirkt sich jedoch auch auf höher legierte Stähle aus, wie z. B. martensitische nichtrostende Stähle. Die typische Wärmebehandlung für diese Stähle ist das Vergüten (Q&T). Bei großen Werkzeugen ist die Kühlrate im inneren Bereich geringer als im Randbereich und der innere Bereich des Werkzeugs wird möglicherweise nicht vollständig auf Raumtemperatur abgekühlt, bevor der Anlassschritt stattfindet, was zu einer Q&P- statt einer Q&T-Behandlung führt.
Dieser Artikel befasst sich mit diesen beiden Effekten, dazu wurden dilatometrische Untersuchungen der Stähle X40Cr14, „X25CrN13“ und „X50CrMoN17-1“ bei zwei verschiedenen Austenitisierungstemperaturen, zwei Kühlraten und unterschiedlichen Abschrecktemperaturen durchgeführt. Es wurde festgestellt, dass die Umverteilung auch bei langsamen Kühlraten stattfindet. Aufgrund der teilweisen Perlitbildung und der Ausscheidung/Vergröberung von Vorkarbid kann der Restaustenitgehalt jedoch geringer sein als bei schneller Abkühlung. Darüber hinaus wurde auch bei langsamen Kühlraten ein „Autopartitioning“ festgestellt.
* Lecture held by Simona Kresser at the IFHTSE/ECHT 2022, 5.–8. September 2022 in Salzburg, Austria
Acknowledgment
The authors gratefully acknowledge the funding of the project by voestalpine Böhler Edelstahl GmbH & Co KG.
Danksagung
Die Autoren bedanken sich für die Finanzierung des Projekts seitens der voestalpine Böhler Edelstahl GmbH & Co KG.
References
1 Schneider, R. S. E.; Mesquita, R. A.: IFHTSE Global 21: heat treatment and surface engineering in twenty-first century Part 16: Advances in tool steels and their heat treatment Part 2 – Hot work tool steels and plastic mould steels. Int. Heat Treatm. Surf. Eng. 5 (2011) 3, pp. 94–100, DOI:10.1179/174951411X1295620725350010.1179/174951411X12956207253500Search in Google Scholar
2 Schneider, R.; Pierer, R.; Sammt, K.; Schützenhöfer, W.: Heat Treatment and behaviour of new corrosion resistant plastic mold steels with regard to dimensional change. Proc. of the 4th Int. Conf. on Quenching and the Control of Distortion, 23.–25.11.2003, Bejing, China, CHTS, Beijing, 2003, pp. 357–362Search in Google Scholar
3 Schneider, R.; Sammt, K.; Rabitsch, R.; Haspel, M.: Heat treatment and properties of nitrogen alloyed, martensitic, corrosion-resistant steels. T. Mater. Heat Treatm. 25 (2004) 5, pp. 582–587Search in Google Scholar
4 De Cooman, B. C.; Speer, J. G.: Quench and Partitioning Steel: A New AHSS Concept for Automotive Anti-Intrusion Applications. Steel Res. Int. 77 (2006) 9–10, pp. 634–640, DOI:10.1002/srin.20060644110.1002/srin.200606441Search in Google Scholar
5 Speer, J. G.; De Moor, E.; Findley, K. O.; Matlock, D. K.; De Cooman, B. C.; Edmonds, D. V.: Analysis of Microstructure Evolution in Quenching and Partitioning Automotive Sheet Steel. Metall. Mater. Trans. A 42 (2011) 12, pp. 3591–3601, DOI:10.1007/s11661-011-0869-710.1007/s11661-011-0869-7Search in Google Scholar
6 Huang, Q.; De Cooman, B. C.; Biermann, H.; Mola, J.: Influence of Martensite Fraction on the Stabilization of Austenite in Austenitic–Martensitic Stainless Steels. Metall. Mater. Trans. A 47 (2016) 5, pp. 1947–1959, DOI:10.1007/s11661-016-3382-110.1007/s11661-016-3382-1Search in Google Scholar
7 Huang, Q.; Schröder, C.; Biermann, H.; Volkova, O.; Mola, J.: Influence of Martensite Fraction on Tensile Properties of Quenched and Partitioned (Q&P) Martensitic Stainless Steels. Steel Res. Int. 87 (2016) 8, pp. 1082–1094, DOI:10.1002/srin.20150047210.1002/srin.201500472Search in Google Scholar
8 Kresser, S.; Schneider, R.; Zunko, H.; Sommitsch, C.: A Model to Predict the Microstructural Constituents after Quenching and Partitioning of Martensitic Stainless Steels. HTM J. Heat Treatm. Mat. 76 (2021) 2, pp. 120–131, DOI:10.1515/htm-2020-000810.1515/htm-2020-0008Search in Google Scholar
9 Mola, J.; De Cooman, B. C.: Quenching and Partitioning (Q&P) Processing of Martensitic Stainless Steels. Metall. Mater. Trans. A 44 (2013) 2, pp. 946–967, DOI:10.1007/s11661-012-1420-110.1007/s11661-012-1420-1Search in Google Scholar
10 Kresser, S.; Schneider, R.; Zunko, H.; Sommitsch, C.: Influence of Partitioning Effects on the Retained Austenite Content and Properties of Martensitic Stainless Steel. Steel Res. Int. 94 (2023) 4, pp. 1–8, DOI:10.1002/srin.202200502,open access10.1002/srin.202200502Search in Google Scholar
11 Schneider, R.; Perko, J.; Reithofer, G.: Heat Treatment of Corrosion Resistant Tool Steels for Plastic Moulding. Mater. Manuf. Process. 24 (2009) 7–8, pp. 903–908, DOI:10.1080/1042691090294155310.1080/10426910902941553Search in Google Scholar
12 Zajchowski, P. H.: The kinetics of auto-tempering in selected plain carbon and alloy steels. Master Thesis, Department Materials Science and Engineering, University of California, 197410.2172/4250971Search in Google Scholar
13 Sherman, D. H.; Cross, S. M.; Kim, S.; Grandjean, F.; Long, G. J.; Miller, M. K.: Characterization of the Carbon and Retained Austenite Distributions in Martensitic Medium Cabon, High Silicion Steel. Metall. Mater. Trans. A 38 (2007), pp. 1698–1711, DOI:10.1007/s11661-007-9160-310.1007/s11661-007-9160-3Search in Google Scholar
14 Sackl, S.; Clemens, H.; Primig, S.: Investigation of the Self Tempering Effect of Martensite by Means of Atom Probe Tomography. Pract. Metallogr. 52 (2015) 7, pp. 374–383, DOI:10.3139/147.11034310.3139/147.110343Search in Google Scholar
15 Clarke, A. J.; Klemm-Toole, J.; Clarke, K. D.; Coughlin, D. R.; Pierce, D. T.; Euser, V. K.; Poplawsky, J. D.; Clausen, B.; Brown, D.; Almer, J.; Gibbs, P. J. et. al: Perspectives on Quenching and Tempering 4340 Steel. Metall. Mater. Trans. A 51 (2020) 10, pp. 4984–5005, DOI:10.1007/s11661-020-05972-110.1007/s11661-020-05972-1Search in Google Scholar
16 ASTM E975-13: Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation (Withdrawn 2022). ASTM International, Pennsylvania, USA, 2013, DOI:10.1520/e0975-1310.1520/e0975-13Search in Google Scholar
17 Petzow, G.: Metallographisches Keramographisches Plastographisches Ätzen. Borntraeger, Stuttgart, 2006. – ISBN:978-3443230142Search in Google Scholar
18 Kresser, S.; Schneider, R.; Zunko, H.; Sommitsch, C.: Modelling and Simulation of Phase Formations in Martensitic Stainless Steels. Berg Hüttenmänn. Monatsh. 167 (2021) 1, pp. 23–28. DOI:10.1007/s00501-021-01181-410.1007/s00501-021-01181-4Search in Google Scholar
19 Alvarez, L. F.; Garcia de Andres, C.; Lopez, V.: Continuous Cooling Transformations in Martensitic Stainless Steels. ISIJ Int. 34 (1994) 6, pp. 516–521, DOI:10.2355/isijinternational.34.51610.2355/isijinternational.34.516Search in Google Scholar
20 Garcia de Andres, C.; Alvarez, L. F.: Optimization of the properties obtained by quenching in martensitic stainless steels X30-40Cr13 and X40-60CrMoV14. J. Mater. Sci. 28 (1993) 5, pp. 1264–1268, DOI:10.1007/BF0119196210.1007/BF01191962Search in Google Scholar
21 Garcia de Andres, C.; Caruana, G.; Alvarez, L. F.: Control of M23C6 carbides in 0.45C–13Cr martensitic stainless steel by means of three representative heat treatment parameters. Mat. Sci. Eng. A-Struct. 241 (1998) 1–2, pp. 211–215, DOI:10.1016/S0921-5093(97)00491-710.1016/S0921-5093(97)00491-7Search in Google Scholar
22 Pöckl, G.; Lenger, H.; Fauland, H.; Jan, H.: Heat treatment of high chromium cold work tool steels and high speed steels in the vacuum furnace. Proc. of the 11th IFHTSE Congress, 19.–21.10.1998, Florence, Italy, Associazione Italiana Metallurgia, Milan, 1998, pp. 63–76. – ISBN: 8885298311Search in Google Scholar
23 Kulmburg, A.; Kaiser, E.; Korntheuer, F.: Vorgänge beim Anlassen von Warm- und Kaltarbeitsstählen. HTM J. Heat Treatm. Mat. 44 (1989) 2, pp. 83–87, DOI:10.1515/htm-1989-44021110.1515/htm-1989-440211Search in Google Scholar
24 Speer, J. G.; Rizzo, F. C.; Matlocka, D. K.; Edmonds, D. V.: The “quenching and partitioning” process: background and recent progress. Mat. Res. 8 (2005) 4, pp. 417–423, DOI:10.1590/S1516-1439200500040001010.1590/S1516-14392005000400010Search in Google Scholar
25 Berns, H.; Theisen, W.: Eisenwerkstoffe – Stahl und Gusseisen. 4. Aufl., Springer, Bochum, 2008, DOI:10.1007/978-3-540-79957-310.1007/978-3-540-79957-3Search in Google Scholar
26 Kresser, S.; Schneider, R.; Zunko, H.; Sommitsch, C.: Investigation of the tempering and partitioning behaviour of a martensitic stainless steel at different quenching and tempering temperatures. Conf. Proc. ECHT 2021 and QDE, 27.–28.04.2021, online, J. Kleff, T. Lübben (eds.), CD, 2021, pp. 108−115Search in Google Scholar
27 Steven, W.; Haynes, A. G.: The temperature of formation of martensite and bainite in low-alloy steel. J. Iron Steel I. 183 (1956) 8, pp. 349–359Search in Google Scholar
28 Andrews, K. W.: Empirical formulae for the calculation of some transformation temperatures. J. Iron Steel I. 203 (1965) 7, pp. 721–727Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston, Germany
Articles in the same Issue
- Contents
- Investigations on Case Hardening of an Additive Manufactured Steel 20MnCr5 (via PBF-LB/M)
- Continuous Cooling Transformation Diagram of Case Hardening Steel by Instrumented Jominy Test
- Investigations on the Effect of Cooling Rate on Quenching & Partitioning (Q&P) in Martensitic Stainless Steels
- The Hydrogen Challenge: Requirements for Future Materials
- Imprint / Impressum
- Imprint / Impressum
- From and for Practice / Praxis-Informationen
- AWT-Info / HTM 04-2023
- HTM Praxis
Articles in the same Issue
- Contents
- Investigations on Case Hardening of an Additive Manufactured Steel 20MnCr5 (via PBF-LB/M)
- Continuous Cooling Transformation Diagram of Case Hardening Steel by Instrumented Jominy Test
- Investigations on the Effect of Cooling Rate on Quenching & Partitioning (Q&P) in Martensitic Stainless Steels
- The Hydrogen Challenge: Requirements for Future Materials
- Imprint / Impressum
- Imprint / Impressum
- From and for Practice / Praxis-Informationen
- AWT-Info / HTM 04-2023
- HTM Praxis