Abstract
Binder-based additive manufacturing processes for metallic AM components in a wide range of applications usually use organic binders and process-related additives that must be thermally removed before sintering. Debinding processes are typically parameterized empirically and thus far from the optimum. Since debinding based on thermal decomposition processes of organic components and the subsequent thermochemical reactions between process atmosphere and metal powder materials make uncomplicated parameterization difficult, in-situ instrumentation was introduced at Fraunhofer IFAM. This measurement method relies on infrared spectroscopy and mass spectrometry in various furnace concepts to understand the gas processes of decomposition of organic components and the subsequent thermochemical reactions between the carrier gas atmosphere and the metal part, as well as their kinetics. This method enables an efficient optimization of the temperature-time profiles and the required atmosphere composition to realize dense AM components with low contamination. In the paper, the optimization strategy is presented, and the achievable properties are illustrated using a fused filament fabrication (FFF) component example made of 316L stainless steel.
Kurzfassung
Bindemittelbasierte additive Fertigungsverfahren für metallische AM-Bauteile in einer Vielzahl von Anwendungen verwenden in der Regel organische Bindemittel und prozessbedingte Additive, die vor dem Sintern thermisch entfernt werden müssen. Die Entbinderungsprozesse sind typischerweise empirisch parametrisiert und damit weit vom Optimum entfernt. Da Entbinderungsprozesse, die auf thermischen Zersetzungsprozessen organischer Komponenten und den anschließenden thermochemischen Reaktionen zwischen Prozessatmosphäre und metallischen Pulverwerkstoffen beruhen, eine unkomplizierte Parametrierung erschweren, wurde am Fraunhofer IFAM eine in-situ-Messtechnik eingeführt. Diese Messmethode stützt sich auf Infrarotspektroskopie und Massenspektrometrie in verschiedenen Ofenkonzepten, um die gasförmigen Zersetzungsprozesse der organischen Komponenten und die nachfolgenden thermochemischen Reaktionen zwischen Schutzgasatmosphäre und Metallteil sowie deren Kinetik zu verstehen. Diese Methode ermöglicht eine effiziente Optimierung der Temperatur-Zeit-Profile und der erforderlichen Atmosphärenzusammensetzung, um dichte AM-Bauteile mit geringer Kontamination zu realisieren. In dem Beitrag wird die Optimierungsstrategie vorgestellt und die erreichbaren Eigenschaften werden am Beispiel eines Fused Filament Fabrication (FFF)-Bauteils aus Edelstahl 316L illustriert.
References
1 Burkhardt, C.; Freigassner, P.; Weber, O.; Imgrund, P.; Hampel, S.: Deposition Technologies Fused Filament Fabrication (FFF) of 316L Green Parts for the MIM process. Proc. Euro PM 2017, 1.–15.10.2017, Milan, Italy, EPMA, Shrewsbury, United Kingdom, 2017, on CDSearch in Google Scholar
2 Baum, M. M.; Becker, R. M.; Lappas, A. M.; Moss, J. A.; Apelian, D.; Saha, D.; Kapinus, V. A.: Lubricant Pyrolysis during Sintering of powder metallurgy compacts. Met. Mat. Trans. B 35 (2004) 2, pp. 381–392, DOI:10.1007/s11663-004-0038-010.1007/s11663-004-0038-0Search in Google Scholar
3 Grassie, N.; Scott, G.: Polymer Degradation and Stabilisation. Cambridge University Press, 1985, pp. 222. – ISBN: 0 521 24961 9Search in Google Scholar
4 Grassie, N.: Aspects of degradation and stabilization of polymers: A review: ed. by H. H. G. Jellinek. Polymer 19 (1978) 9, p. 111, DOI:10.1016/0032-3861(78)90161-110.1016/0032-3861(78)90161-1Search in Google Scholar
5 Danninger, H.; Avakemian, A.; Gierl-Mayer, C.: Congress Proc. Euro PM 2014, 21.–24.09.2014, Salzburg, Austria, EPMA, Shrewsbury, United Kingdom, 2014. – ISBN: 978 1 899072 45 3Search in Google Scholar
6 Oro, R.; Campos, M.; Gierl-Mayer, C.; Danninger, H.; Torralba, J. M.: New Alloying Systems for Sintered Steels: Critical Aspects of Sintering Behavior. Met. Mat. Trans A 46 (2015), pp. 1349–1359, DOI:10.1007/s11661-014-2707-110.1007/s11661-014-2707-1Search in Google Scholar
7 de Oro Calderon, R.; Jaliliziyaeian, M.; Gierl-Mayer, C.; Danninger, H.: Effects of H2 Atmospheres on Sintering of Low Alloy Steels Containing Oxygen-Sensitive Masteralloys. JOM 69 (2017), pp. 635–644, DOI:10.1007/s11837-017-2287-910.1007/s11837-017-2287-9Search in Google Scholar
8 Quadbeck, P.; Strauß, A.; Riecker, B.; Andersen, O.; Kieback, B.: Efficient optimization of the debinding and sintering of non-beam based additive manufactured components. Proc. Euro PM 2018, 14.–18.10.2018, Bilbao, Spain, EPMA, Shrewsbury, United Kingdom, 2018. – ISBN 978-1-899072-50-7Search in Google Scholar
9 Quadbeck, P.; Strauß, A.; Lang, M.: Process gas as control variables in furnaces – a new debinding concept for binder based PM components. Proc. Euro PM 2019, 13.–16.10.2019, Masstricht, The Netherland, EPMA, Shrewsbury, United Kingdom, 2019. – ISBN: 9781899072514Search in Google Scholar
10 Hryha, E.; Nyborg, L.; Malas, A.; Wiberg, S.; Berg, S.: Carbon control in PM sintering: industrial applications and experience. Powder Metallurgy 56 (2013) 1, pp. 5–10, DOI:10.1179/0032589912Z.0000000008510.1179/0032589912Z.00000000085Search in Google Scholar
11 Ortiz, P.; Castro, F.: Thermodynamic and experimental study of role of sintering atmospheres and graphite additions on oxide reduction in Astaloy CrM powder compacts. Powder Metallurgy 47 (2004) 3, pp. 291–298, DOI:10.1179/00325890422502074710.1179/003258904225020747Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston, Germany
Articles in the same Issue
- Contents / Inhalt
- Martensitic Induction Hardening of Nitrided Layers*
- Application of Machine Learning Techniques to Determine Surface Hardness Based on the Barkhausen Effect
- S3P– Innovative Surface Treatment to Increase the Wear Resistance of Stainless Steel Components*
- Gas Analysis and Optimization of Debinding and Sintering Processes for Metallic Binder-Based AM*
- Imprint / Impressum
- Imprint / Impressum
- From and for Practice / Praxis-Informationen
- AWT-Info / HTM 06-2022
- HTM Praxis
Articles in the same Issue
- Contents / Inhalt
- Martensitic Induction Hardening of Nitrided Layers*
- Application of Machine Learning Techniques to Determine Surface Hardness Based on the Barkhausen Effect
- S3P– Innovative Surface Treatment to Increase the Wear Resistance of Stainless Steel Components*
- Gas Analysis and Optimization of Debinding and Sintering Processes for Metallic Binder-Based AM*
- Imprint / Impressum
- Imprint / Impressum
- From and for Practice / Praxis-Informationen
- AWT-Info / HTM 06-2022
- HTM Praxis