Unpaired cysteine insertions favor transmembrane dimerization and induce ligand-independent constitutive cytokine receptor signaling
-
Lynn Affrica Felicitas Baumgärtner
, Sofie Mossner
, Helmut Hanenberg
, Jürgen Scheller
and Doreen Manuela Floss
Abstract
Naturally occurring gain-of-function (GOF) mutants have been identified in patients for a variety of cytokine receptors. Although this constitutive activation of cytokine receptors is strongly associated with malignant disorders, ligand-independent receptor activation is also a useful tool in synthetic biology e.g. to improve adoptive cellular therapies with genetically modified T-cells. Balanced Interleukin (IL-)7 signaling via a heterodimer of IL-7 receptor (IL-7Rα) and the common γ-chain (γc) controls T- and B-cell development and expansion, whereas uncontrolled IL-7 signaling can drive acute lymphoid leukemia (ALL) development. The ALL-driver mutation PPCL in the transmembrane domain of IL-7Rα is a mutational insertion of the four amino acids proline-proline-cysteine-leucine and leads to ligand-independent receptor dimerization and constitutive activation. We showed here in the cytokine-dependent pre-B-cell line Ba/F3 that the PPCL-insertion in a synthetic version of the IL-7Rα induced γc-independent STAT5 and ERK phosphorylation and also proliferation of the cells and that booster-stimulation by arteficial ligands additionally generated non-canonical STAT3 phosphorylation via the synthetic IL-7Rα-PPCL-receptors. Transfer of the IL-7Rα transmembrane domain with the PPCL insertion into natural and synthetic cytokine receptor chains of the IL-6, IL-12 and Interferon families also resulted in constitutive receptor signaling. In conclusion, our data suggested that the insertion of the mutated PPCL IL-7Rα transmembrane domain is an universal approach to generate ligand-independent, constitutively active cytokine receptors.
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: SCHE 907/5–1
Award Identifier / Grant number: SCHE 907/6-1
Funding source: Deutsche Krebshilfe e.V.
Award Identifier / Grant number: 70114844
Acknowledgments
We thank Yvonne Arlt for technical assistance.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. L.A.F.B., D.J.L., S.M., C.B., M.O. and H.B. formal analysis, validation, investigation; D.M.F. and J.E. supervision; J.E. resources; L.A.F.B. visualization; J.S. and D.M.F. conceptualization; J.S. and H.H. funding acquisition; L.A.F.B., J.E., H.H., J.S. and D.M F. writing and editing; D.M.F. and J.E. data curation; D.M.F. and J.E. methodology; L.A.F.B., J.S. and D.M.F. writing-original draft; D.M.F. project administration.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: J.S. was funded by grants from the Deutsche Forschungsgemeinschaft (SCHE 907/5-1 and SCHE 907/6-1). H.H. acknowledges a grant from the Deutsche Krebshilfe e.V. (70114844).
-
Data availability: Not applicable.
References
Almeida, A.R.M., Neto, J.L., Cachucho, A., Euzebio, M., Meng, X., Kim, R., Fernandes, M.B., Raposo, B., Oliveira, M.L., Ribeiro, D., et al.. (2021). Interleukin-7 receptor α mutational activation can initiate precursor B-cell acute lymphoblastic leukemia. Nat. Commun. 12: 7268, https://doi.org/10.1038/s41467-021-27197-5.Search in Google Scholar PubMed PubMed Central
Campos, L.W., Pissinato, L.G., and Yunes, J.A. (2019). Deleterious and oncogenic mutations in the IL7Ra. Cancers 11, https://doi.org/10.3390/cancers11121952.Search in Google Scholar PubMed PubMed Central
Edelheit, O., Hanukoglu, A., and Hanukoglu, I. (2009). Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. BMC Biotechnol. 9: 61, https://doi.org/10.1186/1472-6750-9-61.Search in Google Scholar PubMed PubMed Central
Engelowski, E., Schneider, A., Franke, M., Xu, H., Clemen, R., Lang, A., Baran, P., Binsch, C., Knebel, B., Al-Hasani, H., et al.. (2018). Synthetic cytokine receptors transmit biological signals using artificial ligands. Nat. Commun. 9: 2034, https://doi.org/10.1038/s41467-018-04454-8.Search in Google Scholar PubMed PubMed Central
Etxeberria, I., Olivera, I., Bolanos, E., Cirella, A., Teijeira, A., Berraondo, P., and Melero, I. (2020). Engineering bionic T cells: signal 1, signal 2, signal 3, reprogramming and the removal of inhibitory mechanisms. Cell. Mol. Immunol. 17: 576–586, https://doi.org/10.1038/s41423-020-0464-1.Search in Google Scholar PubMed PubMed Central
Fischer, M., Goldschmitt, J., Peschel, C., Brakenhoff, J.P., Kallen, K.J., Wollmer, A., Grotzinger, J., and Rose-John, S. (1997). A bioactive designer cytokine for human hematopoietic progenitor cell expansion. Nat. Biotechnol. 15: 145–155, https://doi.org/10.1038/nbt0297-142.Search in Google Scholar PubMed
Floss, D.M., Mrotzek, S., Klöcker, T., Schröder, J., Grözinger, J., Rose-John, S., and Scheller, J. (2013). Identification of canonical tyrosine-dependent and non-canonical tyrosine-independent STAT3 activation sites in the intracellular domain of the interleukin 23 receptor. J. Biol. Chem. 288: 19386–19400, https://doi.org/10.1074/jbc.m112.432153.Search in Google Scholar
Floss, D.M. and Scheller, J. (2019). Naturally occurring and synthetic constitutive-active cytokine receptors in disease and therapy. Cytokine Growth Factor Rev. 47: 1–20, https://doi.org/10.1016/j.cytogfr.2019.05.007.Search in Google Scholar PubMed
Fridy, P.C., Li, Y., Keegan, S., Thompson, M.K., Nudelman, I., Scheid, J.F., Oeffinger, M., Nussenzweig, M.C., Fenyo, D., Chait, B.T., et al.. (2014). A robust pipeline for rapid production of versatile nanobody repertoires. Nat. Methods 11: 1253–1260, https://doi.org/10.1038/nmeth.3170.Search in Google Scholar PubMed PubMed Central
Gearing, D.P., Ziegler, S.F., Comeau, M.R., Friend, D., Thoma, B., Cosman, D., Park, L., and Mosley, B. (1994). Proliferative responses and binding properties of hematopoietic cells transfected with low-affinity receptors for leukemia inhibitory factor, oncostatin M, and ciliary neurotrophic factor. Proc. Natl. Acad. Sci. U. S. A. 91: 1119–1123, https://doi.org/10.1073/pnas.91.3.1119.Search in Google Scholar PubMed PubMed Central
Georgy, J., Arlt, Y., Moll, J.M., Ouzin, M., Weitz, H.T., Gremer, L., Willbold, D., Grotzinger, J., Thives-Kurenbach, F., Scheller, J., et al.. (2021). Tryptophan (W) at position 37 of murine IL-12/IL-23 p40 is mandatory for binding to IL-12Rβ1 and subsequent signal transduction. J. Biol. Chem. 297: 101295, https://doi.org/10.1016/j.jbc.2021.101295.Search in Google Scholar PubMed PubMed Central
Ketteler, R., Glaser, S., Sandra, O., Martens, U., and Klingmüller, U. (2002). Enhanced transgene expression in primitive hematopoietic progenitor cells and embryonic stem cells efficiently transduced by optimized retroviral hybrid vectors. Gene Ther. 9: 477–487, https://doi.org/10.1038/sj.gt.3301653.Search in Google Scholar PubMed
Kondo, M., Takeshita, T., Higuchi, M., Nakamura, M., Sudo, T., Nishikawa, S., and Sugamura, K. (1994). Functional participation of the IL-2 receptor γ chain in IL-7 receptor complexes. Science 263: 1453–1454, https://doi.org/10.1126/science.8128231.Search in Google Scholar PubMed
Kondo, M., Takeshita, T., Ishii, N., Nakamura, M., Watanabe, S., Arai, K., and Sugamura, K. (1993). Sharing of the interleukin-2 (IL-2) receptor γ chain between receptors for IL-2 and IL-4. Science 262: 1874–1877, https://doi.org/10.1126/science.8266076.Search in Google Scholar PubMed
Lin, J.X., Migone, T.S., Tsang, M., Friedmann, M., Weatherbee, J.A., Zhou, L., Yamauchi, A., Bloom, E.T., Mietz, J., John, S., et al.. (1995). The role of shared receptor motifs and common Stat proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13, and IL-15. Immunity 2: 331–339, https://doi.org/10.1016/1074-7613(95)90141-8.Search in Google Scholar PubMed
Lu, X., Gross, A.W., and Lodish, H.F. (2006). Active conformation of the erythropoietin receptor: random and cysteine-scanning mutagenesis of the extracellular juxtamembrane and transmembrane domains. J. Biol. Chem. 281: 7002–7011, https://doi.org/10.1074/jbc.m512638200.Search in Google Scholar PubMed
Mossner, S., Phan, H., Triller, S., Moll, J., Conrad, U., and Scheller, J. (2020). Multimerization strategies for efficient production and purification of highly active synthetic cytokine receptor ligands. PLoS One 15: e0230804, https://doi.org/10.1371/journal.pone.0230804.Search in Google Scholar PubMed PubMed Central
Oppmann, B., Lesley, R., Blom, B., Timans, J.C., Xu, Y., Hunte, B., Vega, F., Yu, N., Wang, J., Singh, K., et al.. (2000). Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13: 715–725, https://doi.org/10.1016/s1074-7613(00)00070-4.Search in Google Scholar PubMed
Ozaki, K. and Leonard, W.J. (2002). Cytokine and cytokine receptor pleiotropy and redundancy. J. Biol. Chem. 277: 29355–29358, https://doi.org/10.1074/jbc.r200003200.Search in Google Scholar
Perna, S.K., Pagliara, D., Mahendravada, A., Liu, H., Brenner, M.K., Savoldo, B., and Dotti, G. (2014). Interleukin-7 mediates selective expansion of tumor-redirected cytotoxic T lymphocytes (CTLs) without enhancement of regulatory T-cell inhibition. Clin. Cancer Res. 20: 131–139, https://doi.org/10.1158/1078-0432.ccr-13-1016.Search in Google Scholar
Peschon, J.J., Morrissey, P.J., Grabstein, K.H., Ramsdell, F.J., Maraskovsky, E., Gliniak, B.C., Park, L.S., Ziegler, S.F., Williams, D.E., Ware, C.B., et al.. (1994). Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J. Exp. Med. 180: 1955–1960, https://doi.org/10.1084/jem.180.5.1955.Search in Google Scholar PubMed PubMed Central
Porcu, M., Kleppe, M., Gianfelici, V., Geerdens, E., De Keersmaecker, K., Tartaglia, M., Foà, R., Soulier, J., Cauwelier, B., Uyttebroeck, A., et al.. (2012). Mutation of the receptor tyrosine phosphatase PTPRC (CD45) in T-cell acute lymphoblastic leukemia. Blood 119: 4476–4479, https://doi.org/10.1182/blood-2011-09-379958.Search in Google Scholar PubMed
Rebouissou, S., Amessou, M., Couchy, G., Poussin, K., Imbeaud, S., Pilati, C., Izard, T., Balabaud, C., Bioulac-Sage, P., and Zucman-Rossi, J. (2009). Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours. Nature 457: 200–204, https://doi.org/10.1038/nature07475.Search in Google Scholar PubMed PubMed Central
Rose-John, S., Jenkins, B., Garbers, C., Moll, J., and Scheller, J. (2023). Targeting IL-6 trans-signalling: past, present and future prospects. Nat. Rev. Immunol. 23: 666–681, https://doi.org/10.1038/s41577-023-00856-y.Search in Google Scholar PubMed PubMed Central
Rothbauer, U., Zolghadr, K., Muyldermans, S., Schepers, A., Cardoso, M.C., and Leonhardt, H. (2008). A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins. Mol. Cell. Proteomics 7: 282–289, https://doi.org/10.1074/mcp.m700342-mcp200.Search in Google Scholar PubMed
Scheller, J., Ettich, J., Wittich, C., Pudewell, S., Floss, D.M., and Rafii, P. (2023). Exploring the landscape of synthetic IL-6-type cytokines. FEBS J., https://doi.org/10.1111/febs.16909.Search in Google Scholar PubMed
Schmidt-Arras, D., Muller, M., Stevanovic, M., Horn, S., Schutt, A., Bergmann, J., Wilkens, R., Lickert, A., and Rose-John, S. (2014). Oncogenic deletion mutants of gp130 signal from intracellular compartments. J. Cell Sci. 127: 341–353, https://doi.org/10.1242/jcs.130294.Search in Google Scholar PubMed
Sharma, S., Sauer, T., Omer, B.A., Shum, T., Rollins, L.A., and Rooney, C.M. (2023). Constitutive Interleukin-7 cytokine signaling enhances the persistence of Epstein-Barr Virus-specific T-cells. Int. J. Mol. Sci. 24, https://doi.org/10.3390/ijms242115806.Search in Google Scholar PubMed PubMed Central
Shochat, C., Tal, N., Bandapalli, O.R., Palmi, C., Ganmore, I., te Kronnie, G., Cario, G., Cazzaniga, G., Kulozik, A.E., Stanulla, M., et al.. (2011). Gain-of-function mutations in interleukin-7 receptor-α (IL7R) in childhood acute lymphoblastic leukemias. J. Exp. Med. 208: 901–908, https://doi.org/10.1084/jem.20110580.Search in Google Scholar PubMed PubMed Central
Shochat, C., Tal, N., Gryshkova, V., Birger, Y., Bandapalli, O.R., Cazzaniga, G., Gershman, N., Kulozik, A.E., Biondi, A., Mansour, M.R., et al.. (2014). Novel activating mutations lacking cysteine in type I cytokine receptors in acute lymphoblastic leukemia. Blood 124: 106–110, https://doi.org/10.1182/blood-2013-10-529685.Search in Google Scholar PubMed
Shum, T., Omer, B., Tashiro, H., Kruse, R.L., Wagner, D.L., Parikh, K., Yi, Z., Sauer, T., Liu, D., Parihar, R., et al.. (2017). Constitutive signaling from an engineered IL7 receptor promotes durable tumor elimination by tumor-redirected T cells. Cancer Discov 7: 1238–1247, https://doi.org/10.1158/2159-8290.cd-17-0538.Search in Google Scholar
Suthaus, J., Tillmann, A., Lorenzen, I., Bulanova, E., Rose-John, S., and Scheller, J. (2010). Forced homo- and heterodimerization of all gp130-type receptor complexes leads to constitutive ligand-independent signaling and cytokine-independent growth. Mol. Biol. Cell 21: 2797–2807, https://doi.org/10.1091/mbc.e10-03-0240.Search in Google Scholar
Thomas, K.R., Allenspach, E.J., Camp, N.D., Wray-Dutra, M.N., Khim, S., Zielinska-Kwiatkowska, A., Timms, A.E., Loftus, J.P., Liggitt, H.D., Georgopoulos, K., et al.. (2022). Activated interleukin-7 receptor signaling drives B-cell acute lymphoblastic leukemia in mice. Leukemia 36: 42–57, https://doi.org/10.1038/s41375-021-01326-x.Search in Google Scholar PubMed PubMed Central
Tsilingiri, K., Fornasa, G., and Rescigno, M. (2017). Thymic stromal lymphopoietin: to cut a long story short. Cell. Mol. Gastroenterol. Hepatol. 3: 174–182, https://doi.org/10.1016/j.jcmgh.2017.01.005.Search in Google Scholar PubMed PubMed Central
Winer, H., Rodrigues, G.O.L., Hixon, J.A., Aiello, B., Hsu, T.C., Wachter, B.T., Li, W., and Durum, S.K. (2022). IL-7: comprehensive review. Cytokine 160: 156049, https://doi.org/10.1016/j.cyto.2022.156049.Search in Google Scholar PubMed
Zenatti, P.P., Ribeiro, D., Li, W., Zuurbier, L., Silva, M.C., Paganin, M., Tritapoe, J., Hixon, J.A., Silveira, A.B., Cardoso, B.A., et al.. (2011). Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat. Genet. 43: 932–939, https://doi.org/10.1038/ng.924.Search in Google Scholar PubMed PubMed Central
Zhang, J., Ding, L., Holmfeldt, L., Wu, G., Heatley, S.L., Payne-Turner, D., Easton, J., Chen, X., Wang, J., Rusch, M., et al.. (2012). The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481: 157–163, https://doi.org/10.1038/nature10725.Search in Google Scholar PubMed PubMed Central
Zhao, Z., Li, Y., Liu, W., and Li, X. (2020). Engineered IL-7 receptor enhances the therapeutic effect of AXL-CAR-T cells on triple-negative breast cancer. Biomed. Res. Int. 2020: 4795171, https://doi.org/10.1155/2020/4795171.Search in Google Scholar PubMed PubMed Central
Zoellner, N., Coesfeld, N., De Vos, F.H., Denter, J., Xu, H.C., Zimmer, E., Knebel, B., Al-Hasani, H., Mossner, S., Lang, P.A., et al.. (2022). Synthetic mimetics assigned a major role to IFNAR2 in type I interferon signaling. Front. Microbiol. 13: 947169, https://doi.org/10.3389/fmicb.2022.947169.Search in Google Scholar PubMed PubMed Central
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/hsz-2023-0344).
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Highlight: New developments in immunoengineering
- Highlight: new developments in immunoengineering
- Better safe than sorry: dual targeting antibodies for cancer immunotherapy
- Bovine ultralong CDR-H3 derived knob paratopes elicit potent TNF-α neutralization and enable the generation of novel adalimumab-based antibody architectures with augmented features
- Development of an enabling platform biotechnology for the production of proteins
- Beyond CAR T cells: exploring alternative cell sources for CAR-like cellular therapies
- Advances in preclinical TCR characterization: leveraging cell avidity to identify functional TCRs
- Unpaired cysteine insertions favor transmembrane dimerization and induce ligand-independent constitutive cytokine receptor signaling
Articles in the same Issue
- Frontmatter
- Highlight: New developments in immunoengineering
- Highlight: new developments in immunoengineering
- Better safe than sorry: dual targeting antibodies for cancer immunotherapy
- Bovine ultralong CDR-H3 derived knob paratopes elicit potent TNF-α neutralization and enable the generation of novel adalimumab-based antibody architectures with augmented features
- Development of an enabling platform biotechnology for the production of proteins
- Beyond CAR T cells: exploring alternative cell sources for CAR-like cellular therapies
- Advances in preclinical TCR characterization: leveraging cell avidity to identify functional TCRs
- Unpaired cysteine insertions favor transmembrane dimerization and induce ligand-independent constitutive cytokine receptor signaling