Study of two glycosyltransferases related to polysaccharide biosynthesis in Rhodococcus jostii RHA1
-
Antonela Estefania Cereijo
, María Victoria Ferretti , Alberto Alvaro Iglesias, Héctor Manuel Álvarez
and Matías Damian Asencion Diez
Abstract
The bacterial genus Rhodococcus comprises organisms performing oleaginous behaviors under certain growth conditions and ratios of carbon and nitrogen availability. Rhodococci are outstanding producers of biofuel precursors, where lipid and glycogen metabolisms are closely related. Thus, a better understanding of rhodococcal carbon partitioning requires identifying catalytic steps redirecting sugar moieties to storage molecules. Here, we analyzed two GT4 glycosyl-transferases from Rhodococcus jostii (RjoGlgAb and RjoGlgAc) annotated as α-glucan-α-1,4-glucosyl transferases, putatively involved in glycogen synthesis. Both enzymes were produced in Escherichia coli cells, purified to homogeneity, and kinetically characterized. RjoGlgAb and RjoGlgAc presented the “canonical” glycogen synthase activity and were actives as maltose-1P synthases, although to a different extent. Then, RjoGlgAc is a homologous enzyme to the mycobacterial GlgM, with similar kinetic behavior and glucosyl-donor preference. RjoGlgAc was two orders of magnitude more efficient to glucosylate glucose-1P than glycogen, also using glucosamine-1P as a catalytically efficient aglycon. Instead, RjoGlgAb exhibited both activities with similar kinetic efficiency and preference for short-branched α-1,4-glucans. Curiously, RjoGlgAb presented a super-oligomeric conformation (higher than 15 subunits), representing a novel enzyme with a unique structure-to-function relationship. Kinetic results presented herein constitute a hint to infer on polysaccharides biosynthesis in rhodococci from an enzymological point of view.
Funding source: Fondo para la Investigación Científica y Tecnológica
Award Identifier / Grant number: PICT-2018-00698,PICT-2018-00929,PICT-2020-03326
Funding source: Consejo Nacional de Investigaciones Científicas y Técnicas
Award Identifier / Grant number: PIP2015-2016 0529
Acknowledgments
AAI, HMA and MDAD are career investigator members of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. AEC and MVF are fellowship holders from CONICET.
-
Research ethics: This article does not contain any studies with human participants or animals performed by any of the authors.
-
Author contributions: MDAD and HMA conceived and designed research. AEC, MVF and MDAD conducted experiments. MDAD, HMA and AAI contributed reagents and analytical tools. MDAD, AEC and MVF analyzed data. MDAD and AEC wrote the manuscript. All authors read, revised and approved the manuscript.
-
Competing interests: The authors declare no conflict of interest.
-
Research funding: This study was funded by grants from ANPCyT (PICT-2018-00929 and PICT-2020-03326 to AAI; and PICT-2018-00698 to MDAD) and CONICET (PIP2015-2016 0529 to HMA).
-
Data availability: All data generated or analyzed during this study are included in this published article (and its supplementary information files).
References
Alarico, S., Empadinhas, N., and da Costa, M.S. (2013). A new bacterial hydrolase specific for the compatible solutes α-D-mannopyranosyl-(1→2)-D-glycerate and α-D-glucopyranosyl-(1→2)-D-glycerate. Enzyme Microb. Technol. 52: 77–83, https://doi.org/10.1016/j.enzmictec.2012.10.008.Search in Google Scholar PubMed
Álvarez-Lugo, A. and Becerra, A. (2021). The role of gene duplication in the divergence of enzyme function: a comparative approach. Front. Genet. 12: 1253, https://doi.org/10.3389/fgene.2021.641817.Search in Google Scholar PubMed PubMed Central
Alvarez, H.M., Hernández, M.A., Lanfranconi, M.P., Silva, R.A., Villalba, M.S. (2021). Rhodococcus as biofactories for microbial oil production. Molecules 26: 4871. https://doi.org/10.3390/molecules26164871.Search in Google Scholar PubMed PubMed Central
Asención Diez, M.D., Demonte, A.M., Syson, K., Arias, D.G., Gorelik, A., Guerrero, S.A., Bornemann, S., and Iglesias, A.A. (2015). Allosteric regulation of the partitioning of glucose-1-phosphate between glycogen and trehalose biosynthesis in Mycobacterium tuberculosis. Biochim. Biophys. Acta 1850: 13–21, https://doi.org/10.1016/j.bbagen.2014.09.023.Search in Google Scholar PubMed PubMed Central
Asención Diez, M.D., Miah, F., Stevenson, C.E.M., Lawson, D.M., Iglesias, A.A., and Bornemann, S. (2017). The production and utilization of GDP-glucose in the biosynthesis of trehalose 6-phosphate by Streptomyces venezuelae. J. Biol. Chem. 292: 945–954, https://doi.org/10.1074/jbc.M116.758664.Search in Google Scholar PubMed PubMed Central
Asención Diez, M.D., Peirú, S., Demonte, A.M., Gramajo, H., and Iglesias, A.A. (2012). Characterization of recombinant UDP- and ADP-glucose pyrophosphorylases and glycogen synthase to elucidate glucose-1-phosphate partitioning into oligo- and polysaccharides in Streptomyces coelicolor. J. Bacteriol. 194: 1485–1493, https://doi.org/10.1128/JB.06377-11.Search in Google Scholar PubMed PubMed Central
Ball, S.G. and Morell, M.K. (2003). From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu. Rev. Plant Biol. 54: 207–233, https://doi.org/10.1146/annurev.arplant.54.031902.134927.Search in Google Scholar PubMed
Ballicora, M., Iglesias, A., and Preiss, J. (2003). ADP-glucose pyrophosphorylase, a regulatory enzyme for bacterial glycogen synthesis. Microbiol. Mol. Biol. Rev. 67: 213–225, https://doi.org/10.1128/mmbr.67.2.213-225.2003.Search in Google Scholar PubMed PubMed Central
Ballicora, M.A., Erben, E.D., Yazaki, T., Bertolo, A.L., Demonte, A.M., Schmidt, Jr., Aleanzi, M., Bejar, C.M., Figueroa, C.M., Fusari, C.M., et al.. (2007). Identification of regions critically affecting kinetics and allosteric regulation of the Escherichia coli ADP-glucose pyrophosphorylase by modeling and pentapeptide-scanning mutagenesis. J. Bacteriol. 189: 5325–5333, https://doi.org/10.1128/jb.00481-07.Search in Google Scholar PubMed PubMed Central
Barchiesi, J., Hedin, N., Iglesias, A.A., Gomez-Casati, D.F., Ballicora, M.A., and Busi, M.V. (2017). Identification of a novel starch synthase III from the picoalgae Ostreococcus tauri. Biochimie 133: 37–44, https://doi.org/10.1016/j.biochi.2016.12.003.Search in Google Scholar PubMed
Barchiesi, J., Velazquez, M.B., Palopoli, N., Iglesias, A.A., Gomez-Casati, D.F., Ballicora, M.A., and Busi, M.V. (2018). Starch synthesis in Ostreococcus tauri: the starch-binding domains of starch synthase III-B are essential for catalytic activity. Front. Plant Sci. 9: 1541, https://doi.org/10.3389/fpls.2018.01541.Search in Google Scholar PubMed PubMed Central
Bar-Even, A., Noor, E., Savir, Y., Liebermeister, W., Davidi, D., Tawfik, D.S., and Milo, R. (2011). The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50: 4402–4410, https://doi.org/10.1021/bi2002289.Search in Google Scholar PubMed
Bentley, S.D., Chater, K.F., Cerdeño-Tárraga, A.M., Challis, G.L., Thomson, N.R., James, K.D., Harris, D.E., Quail, M.A., Kieser, H., Harper, D., et al. (2002). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141–147, https://doi.org/10.1038/417141a.Search in Google Scholar PubMed
Bhayani, J., Iglesias, M.J., Minen, R.I., Cereijo, A.E., Ballicora, M.A., Iglesias, A.A., and Asencion Diez, M.D. (2022). Carbohydrate metabolism in bacteria: alternative specificities in ADP-glucose pyrophosphorylases open novel metabolic scenarios and biotechnological tools. Front. Microbiol. 13: 867384, https://doi.org/10.3389/fmicb.2022.867384.Search in Google Scholar PubMed PubMed Central
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254, https://doi.org/10.1006/abio.1976.9999.Search in Google Scholar PubMed
Buschiazzo, A., Ugalde, J.E., Guerin, M.E., Shepard, W., Ugalde, R.A., and Alzari, P.M. (2004). Crystal structure of glycogen synthase: homologous enzymes catalyze glycogen synthesis and degradation. EMBO J. 23: 3196–3205, https://doi.org/10.1038/sj.emboj.7600324.Search in Google Scholar PubMed PubMed Central
Busi, M.V., Palopoli, N., Valdez, H.A., Fornasari, M.S., Wayllace, N.Z., Gomez-Casati, D.F., Parisi, G., and Ugalde, R.A. (2008). Functional and structural characterization of the catalytic domain of the starch synthase III from Arabidopsis thaliana. Proteins 70: 31–40, https://doi.org/10.1002/prot.21469.Search in Google Scholar PubMed
Cappelletti, M., Zampolli, J., Di Gennaro, P., and Zannoni, D. (2019). Genomics of Rhodococcus. In: Alvarez, H. (Ed.). Biology of Rhodococcus, 2nd ed Springer, Cham, Switzerland, pp. 23–60.10.1007/978-3-030-11461-9_2Search in Google Scholar
Cereija, T.B., Alarico, S., Lourenço, EC., Manso, J.A., Ventura, M.R., Empadinhas, N., Macedo-Ribeiro, S., and Pereira, P.J.B. (2019). The structural characterization of a glucosylglycerate hydrolase provides insights into the molecular mechanism of mycobacterial recovery from nitrogen starvation. IUCrJ 6: 572–585, https://doi.org/10.1107/S2052252519005372.Search in Google Scholar PubMed PubMed Central
Cereijo, A., Alvarez, H., Iglesias, A., and Asencion Diez, M. (2020). Glucosamine-P and rhodococcal ADP-glucose pyrophosphorylases: a hint to (re)discover (actino)bacterial amino sugar metabolism. Biochimie 176: 158–161, https://doi.org/10.1016/j.biochi.2020.07.006.Search in Google Scholar PubMed
Cereijo, A.E., Asencion Diez, M.D., Ballicora, M.A., and Iglesias, A.A. (2018). Regulatory properties of the ADP-glucose pyrophosphorylase from the clostridial firmicutes member Ruminococcus albus. J. Bacteriol. 200: e00172-18, https://doi.org/10.1128/JB.00172-18.Search in Google Scholar
Cereijo, A.E., Asencion Diez, M.D., Dávila Costa, J.S., Alvarez, H.M., and Iglesias, A.A. (2016). On the kinetic and allosteric regulatory properties of the ADP-glucose pyrophosphorylase from Rhodococcus jostii: an approach to evaluate glycogen metabolism in oleaginous bacteria. Front. Microbiol. 7: 830, https://doi.org/10.3389/fmicb.2016.00830.Search in Google Scholar
Cereijo, A.E., Kuhn, M.L., Hernández, M.A., Ballicora, M.A., Iglesias, A.A., Alvarez, H.M., and Asencion Diez, M.D. (2021). Study of duplicated galU genes in Rhodococcus jostii and a putative new metabolic node for glucosamine-1P in rhodococci. Biochim. Biophys. Acta Gen. Subj. 1865: 129727, https://doi.org/10.1016/j.bbagen.2020.129727.Search in Google Scholar
Chandra, G., Chater, K.F., and Bornemann, S. (2011). Unexpected and widespread connections between bacterial glycogen and trehalose metabolism. Microbiology 157: 1565–1572, https://doi.org/10.1099/mic.0.044263-0.Search in Google Scholar
Chaudhuri, P., Basu, A., Sengupta, S., Lahiri, S., Dutta, T., and Ghosh, A.K. (2009). Studies on substrate specificity and activity regulating factors of trehalose-6-phosphate synthase of Saccharomyces cerevisiae. Biochim. Biophys. Acta Gen. Subj. 1790: 368–374, https://doi.org/10.1016/j.bbagen.2009.03.008.Search in Google Scholar
Cifuente, J.O., Comino, N., Trastoy, B., D’Angelo, C., and Guerin, M.E. (2019). Structural basis of glycogen metabolism in bacteria. Biochem. J. 476: 2059–2092, https://doi.org/10.1042/BCJ20170558.Search in Google Scholar
Cole, S.T. Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S.V., Eiglmeier, K., Gas, S., Barry, C.E., et al. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544. https://doi.org/10.1038/31159.Search in Google Scholar
Colpaert, M., Kadouche, D., Ducatez, M., Pillonel, T., Kebbi-Beghdadi, C., Cenci, U., Huang, B., Chabi, M., Maes, E., Coddeville, B., et al. (2021). Conservation of the glycogen metabolism pathway underlines a pivotal function of storage polysaccharides in Chlamydiae. Commun. Biol. 4: 296, https://doi.org/10.1038/s42003-021-01794-y.Search in Google Scholar
Daffe, M., McNeil, M., and Brennan, P.J. (1993). Major structural features of the cell wall arabinogalactans of Mycobacterium, Rhodococcus, and Nocardia spp. Carbohydr. Res. 249: 383–398, https://doi.org/10.1016/0008-6215(93)84102-C.Search in Google Scholar
D’Ari, R. and Casadesús, J. (1998). Underground metabolism. Bioessays 20:181–186. https://doi.org/10.1002/(SICI)1521-1878(199802)20:2<181::AID-BIES10>3.0.CO;2-0.10.1002/(SICI)1521-1878(199802)20:2<181::AID-BIES10>3.3.CO;2-6Search in Google Scholar
Davidia, D., Noorb, E., Liebermeisterc, W., Bar-Evend, A., Flamholze, A., Tummlerf, K., Barenholza, U., Goldenfelda, M., Shlomig, T., and Miloa, R. (2016). Global characterization of in vivo enzyme catalytic rates and their correspondence to in vitro kcat measurements. Proc. Natl. Acad. Sci. U. S. A. 113: 3401–3406, https://doi.org/10.1073/pnas.1514240113.Search in Google Scholar PubMed PubMed Central
Demonte, A.M., Asencion Diez, M.D., Naleway, C., Iglesias, A.A., and Ballicora, M.A. (2017). Monofluorophosphate blocks internal polysaccharide synthesis in Streptococcus mutans. PLoS One 12: e0170483, https://doi.org/10.1371/journal.pone.0170483.Search in Google Scholar PubMed PubMed Central
De Smet, K.A.L., Weston, A., Brown, I.N., Young, D.B., and Robertson, B.D. (2000). Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146: 199–208, https://doi.org/10.1099/00221287-146-1-199.Search in Google Scholar PubMed
Díaz-Mejía, J.J., Pérez-Rueda, E., and Segovia, L. (2007). A network perspective on the evolution of metabolism by gene duplication. Genome Biol. 8: R26, https://doi.org/10.1186/gb-2007-8-2-r26.Search in Google Scholar PubMed PubMed Central
Donini, E., Firrincieli, A., and Cappelletti, M. (2021). Systems biology and metabolic engineering of Rhodococcus for bioconversion and biosynthesis processes. Folia Microbiol. 66: 701–713, https://doi.org/10.1007/S12223-021-00892-y.Search in Google Scholar
Drepper, A., Peitzmann, R., and Pape, H. (1996). Maltokinase (ATP:maltose 1-phosphotransferase) from Actinoplanes sp.: demonstration of enzyme activity and characterization of the reaction product. FEBS Lett. 388: 177–179, https://doi.org/10.1016/0014-5793(96)00554-6.Search in Google Scholar PubMed
Drula, E., Garron, M.-L., Dogan, S., Lombard, V., Henrissat, B., and Terrapon, N. (2021). The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res. 50: D571–D577, https://doi.org/10.1093/nar/gkab1045.Search in Google Scholar PubMed PubMed Central
Elbein, A.D. and Mitchell, M. (1973). Levels of glycogen and trehalose in Mycobacterium smegmatis and the purification and properties of the glycogen synthetase. J. Bacteriol. 113: 863–873, https://doi.org/10.1128/jb.113.2.863-873.1973.Search in Google Scholar PubMed PubMed Central
Elbein, A.D., Pastuszak, I., Tackett, A.J., Wilson, T., and Pan, Y.T. (2010). Last step in the conversion of trehalose to glycogen: a mycobacterial enzyme that transfers maltose from maltose 1-phosphate to glycogen. J. Biol. Chem. 285: 9803–9812, https://doi.org/10.1074/jbc.M109.033944.Search in Google Scholar PubMed PubMed Central
Figueroa, C.M., Asencion Diez, M.D., Ballicora, M.A., Iglesias, A.A. (2022). Structure, function, and evolution of plant ADP-glucose pyrophosphorylase. Plant Mol. Biol. 2022 1:1–17. https://doi.org/10.1007/S11103-021-01235-8.Search in Google Scholar PubMed
Fraga, J., Maranha, A., Mendes, V., Pereira, P.J.B., Empadinhas, N., Macedo-Ribeiro, S. (2015). Structure of mycobacterial maltokinase, the missing link in the essential GlgE-pathway. Sci. Rep. 2015 51:1–12. https://doi.org/10.1038/srep08026.Search in Google Scholar PubMed PubMed Central
Galet, C., Le Bourhis, C.M., Chopineau, M., Le Griec, G., Perrin, A., Magallon, T., Attal, J., Viglietta, C., Houdebine, L.M., and Guillou, F. (2001). Expression of a single betaalpha chain protein of equine LH/CG in milk of transgenic rabbits and its biological activity. Mol. Cell. Endocrinol. 174: 31–40, https://doi.org/10.1016/s0303-7207(00)00452-4.Search in Google Scholar PubMed
Glasner, M.E., Truong, D.P., and Morse, B.C. (2020). How enzyme promiscuity and horizontal gene transfer contribute to metabolic innovation. FEBS J. 287: 1323–1342, https://doi.org/10.1111/febs.15185.Search in Google Scholar PubMed PubMed Central
Gouy, M., Guindon, S., and Gascuel, O. (2010). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27: 221–224, https://doi.org/10.1093/molbev/msp259.Search in Google Scholar PubMed
Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. 41: 95–98.Search in Google Scholar
Hernandez, M.A. and Alvarez, H.M. (2010). Glycogen formation by Rhodococcus species and the effect of inhibition of lipid biosynthesis on glycogen accumulation in Rhodococcus opacus PD630. FEMS Microbiol. Lett. 312: 93–99, https://doi.org/10.1111/j.1574-6968.2010.02108.x.Search in Google Scholar PubMed
Hernández, M.A., Mohn, W.W., Martínez, E., Rost, E., Alvarez, A.F., and Alvarez, H.M. (2008). Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism. BMC Genomics 9: 600, https://doi.org/10.1186/1471-2164-9-600.Search in Google Scholar PubMed PubMed Central
Horcajada, C., Guinovart, J.J., Fita, I., and Ferrer, J.C. (2006). Crystal structure of an archaeal glycogen synthase: insights into oligomerization and substrate binding of eukaryotic glycogen synthases. J. Biol. Chem. 281: 2923–2931, https://doi.org/10.1074/jbc.M507394200.Search in Google Scholar PubMed
Jackson, M. and Brennan, P. (2009). Polymethylated polysaccharides from Mycobacterium species revisited. J. Biol. Chem. 284: 1949–1953, https://doi.org/10.1074/jbc.r800047200.Search in Google Scholar PubMed PubMed Central
Jarling, M., Cauvet, T., Grundmeier, M., Kuhnert, K., and Pape, H. (2004). Isolation of mak1 from Actinoplanes missouriensis and evidence that Pep2 from Streptomyces coelicolor is a maltokinase. J. Basic Microbiol. 44: 360–373, https://doi.org/10.1002/jobm.200410403.Search in Google Scholar PubMed
Jeanmougin, F., Thompson, J.D., Gouy, M., Higgins, D.G., and Gibson, T.J. (1998). Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23: 403–405, https://doi.org/10.1016/S0968-0004(98)01285-7.Search in Google Scholar
Kadouche, D., Ducatez, M., Cenci, U., Tirtiaux, C., Suzuki, E., Nakamura, Y., Putaux, J.-L., Terrasson, A.D., Diaz-Troya, S., Florencio, F.J., et al. (2016). Characterization of function of the GlgA2 glycogen/starch synthase in cyanobacterium sp. Clg1 highlights convergent evolution of glycogen metabolism into starch granule aggregation. Plant Physiol. 171: 1879–1892; https://doi.org/10.1104/pp.16.00049.Search in Google Scholar PubMed PubMed Central
Kalscheuer, R. and Jacobs, W.R. (2010). The significance of GlgE as a new target for tuberculosis. Drug News Perspect 23: 619–624, https://doi.org/10.1358/dnp.2010.23.10.1534855.Search in Google Scholar PubMed
Kalscheuer, R., Syson, K., Veeraraghavan, U., Weinrick, B., Biermann, K.E., Liu, Z., Sacchettini, J.C., Besra, G., Bornemann, S., and Jacobs, W.R. (2010). Self-poisoning of Mycobacterium tuberculosis by targeting GlgE in an alpha-glucan pathway. Nat. Chem. Biol. 6: 376–384, https://doi.org/10.1038/nchembio.340.Search in Google Scholar PubMed PubMed Central
Kaur, D., Pham, H., Larrouy-Maumus, G., Rivière, M., Vissa, V., Guerin, M.E., Puzo, G., Brennan, P.J., and Jackson, M. (2009). Initiation of methylglucose lipopolysaccharide biosynthesis in Mycobacteria. PLoS One 4: e5447, https://doi.org/10.1371/journal.pone.0005447.Search in Google Scholar PubMed PubMed Central
Koliwer-Brandl, H., Syson, K., van de Weerd, R., Chandra, G., Appelmelk, B., Alber, M., Ioerger, T.R., Jacobs, W.R.Jr., Geurtsen, J., Bornemann, S., et al.. (2016). Metabolic network for the biosynthesis of intra- and extracellular α-glucans required for virulence of Mycobacterium tuberculosis. PLoS Pathog. 12: e1005768, https://doi.org/10.1371/journal.ppat.1005768.Search in Google Scholar PubMed PubMed Central
Kopp, D. and Sunna, A. (2020). Alternative carbohydrate pathways–enzymes, functions and engineering. Crit. Rev. Biotechnol. 40: 895–912, https://doi.org/10.1080/07388551.2020.1785386.Search in Google Scholar PubMed
Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685, https://doi.org/10.1038/227680a0.Search in Google Scholar PubMed
Lanfranconi, M.P. and Alvarez, H.M. (2017). Rewiring neutral lipids production for the de novo synthesis of wax esters in Rhodococcus opacus PD630. J. Biotechnol. 260: 67–73, https://doi.org/10.1016/j.jbiotec.2017.09.009.Search in Google Scholar PubMed
Lewin, G.R., Carlos, C., Chevrette, M.G., Horn, H.A., McDonald, B.R., Stankey, R.J., Fox, B.G., and Currie, C.R. (2016). Evolution and ecology of Actinobacteria and their bioenergy applications. Annu. Rev. Microbiol. 70: 235–254, https://doi.org/10.1146/annurev-micro-102215-095748.Search in Google Scholar PubMed PubMed Central
Liu, Q.H., Tang, J.W., Wen, P.B., Wang, M.M., Zhang, X., and Wang, L. (2021). From prokaryotes to eukaryotes: insights into the molecular structure of glycogen particles. Front. Mol. Biosci. 8: 673315, https://doi.org/10.3389/fmolb.2021.673315.Search in Google Scholar PubMed PubMed Central
Maranha, A., Moynihan, P.J., Miranda, V., Correia Lourenço, E., Nunes-Costa, D., Fraga, J.S., Barbosa Pereira, J.P., MacEdo-Ribeiro, S., Ventura, M.R., Clarke, A.J., et al. (2015). Octanoylation of early intermediates of mycobacterial methylglucose lipopolysaccharides. Sci. Rep. 2015 51:1–18. https://doi.org/10.1038/srep13610.Search in Google Scholar PubMed PubMed Central
Marella, E.R., Holkenbrink, C., Siewers, V., and Borodina, I. (2018). Engineering microbial fatty acid metabolism for biofuels and biochemicals. Curr. Opin. Biotechnol. 50: 39–46, https://doi.org/10.1016/j.copbio.2017.10.002.Search in Google Scholar PubMed
Matsui, M., Kakut, M., and Misaki, A. (1996). Fine structural features of oyster glycogen: mode of multiple branching. Carbohydr. Polym. 31: 227–235, https://doi.org/10.1016/S0144-8617(96)00116-6.Search in Google Scholar
Matsui, M., Kakuta, M., and Misaki, A. (1993). Comparison of the unit-chain distributions of glycogens from different biological sources, revealed by anion exchange chromatography. Biosci. Biotechnol. Biochem. 57: 623–627, https://doi.org/10.1271/bbb.57.623.Search in Google Scholar
McLeod, M.P., Warren, R.L., Hsiao, W.W.L., Araki, N., Myhre, M., Fernandes, C., Miyazawa, D., Wong, W., Lillquist, A.L., Wang, D., et al. (2006). The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc. Natl. Acad. Sci. U.S.A. 103: 15582–15587, https://doi.org/10.1073/pnas.0607048103.Search in Google Scholar PubMed PubMed Central
Mendes, V., Maranha, A., Alarico, S., and Empadinhas, N. (2012). Biosynthesis of mycobacterial methylglucose lipopolysaccharides. Nat. Prod. Rep. 29: 834–844, https://doi.org/10.1039/C2NP20014G.Search in Google Scholar
Mendes, V., Maranha, A., Lamosa, P., da Costa, M.S., and Empadinhas, N. (2010). Biochemical characterization of the maltokinase from Mycobacterium bovis BCG. BMC Biochem. 11: 21, https://doi.org/10.1186/1471-2091-11-21.Search in Google Scholar PubMed PubMed Central
Mohan, A., Padiadpu, J., Baloni, P., and Chandra, N. (2015). Complete genome sequences of a Mycobacterium smegmatis laboratory strain (MC2 155) and isoniazid-resistant (4XR1/R2) mutant strains. Genome Announc. 3: e01520-14, https://doi.org/10.1128/genomea.01520-14.Search in Google Scholar PubMed PubMed Central
Moremen, K.W. and Haltiwanger, R.S. (2019). Emerging structural insights into glycosyltransferase-mediated synthesis of glycans. Nat. Chem. Biol. 15: 853, https://doi.org/10.1038/S41589-019-0350-2.Search in Google Scholar PubMed PubMed Central
Niehues, B., Jossek, R., Kramer, U., Koch, A., Jarling, M., Schröder, W., and Pape, H. (2003). Isolation and characterization of maltokinase (ATP:maltose 1-phosphotransferase) from Actinoplanes missouriensis. Arch. Microbiol. 180: 233–239, https://doi.org/10.1007/s00203-003-0575-y.Search in Google Scholar PubMed
Nouioui, I., Carro, L., García-López, M., Meier-Kolthoff, J.P., Woyke, T., Kyrpides, N.C., Pukall, R., Klenk, H.P., Goodfellow, M., and Göker, M. (2018). Genome-based taxonomic classification of the phylum Actinobacteria. Front. Microbiol. 9: 2007, https://doi.org/10.3389/fmicb.2018.02007.Search in Google Scholar PubMed PubMed Central
Nunes-Costa, D., Maranha, A., Costa, M., Alarico, S., and Empadinhas, N. (2017). Glucosylglycerate metabolism, bioversatility and mycobacterial survival. Glycobiology 27: 213–227, https://doi.org/10.1093/GLYCOB/CWW132.Search in Google Scholar
Palopoli, N., Busi, M.V., Fornasari, M.S., Gomez-Casati, D., Ugalde, R., and Parisi, G. (2006). Starch-synthase III family encodes a tandem of three starch-binding domains. Proteins Struct. Funct. Genet. 65: 27–31, https://doi.org/10.1002/prot.21007.Search in Google Scholar PubMed
Peracchi, A. (2018). The limits of enzyme specificity and the evolution of metabolism. Trends Biochem. Sci. 43: 984–996, https://doi.org/10.1016/j.tibs.2018.09.015.Search in Google Scholar PubMed
Preiss, J. (2009). Glycogen: biosynthesis and regulation. EcoSal Plus 3: 1–26, https://doi.org/10.1128/ecosalplus.4.7.4.Search in Google Scholar PubMed
Rashid, A.M., Batey, S.F.D., Syson, K., Koliwer-Brandl, H., Miah, F., Barclay, J.E., Findlay, K.C., Nartowski, K.P., Khimyak, Y.Z., Kalscheuer, R., et al. (2016). Assembly of α-glucan by GlgE and GlgB in mycobacteria and streptomycetes. Biochemistry 55: 3270–3284, https://doi.org/10.1021/acs.biochem.6b00209.Search in Google Scholar PubMed
Roach, P.J., Depaoli-Roach, A.A., Hurley, T.D., and Tagliabracci, V.S. (2012). Glycogen and its metabolism: some new developments and old themes. Biochem. J. 441: 763, https://doi.org/10.1042/bj20111416.Search in Google Scholar
Rosenberg, J. and Commichau, F.M. (2019). Harnessing underground metabolism for pathway development. Trends Biotechnol. 37: 29–37, https://doi.org/10.1016/j.tibtech.2018.08.001.Search in Google Scholar PubMed
Sambou, T., Dinadayala, P., Stadthagen, G., Barilone, N., Bordat, Y., Constant, P., Levillain, F., Neyrolles, O., Gicquel, B., Lemassu, A., et al. (2008). Capsular glucan and intracellular glycogen of Mycobacterium tuberculosis: biosynthesis and Impact on the Persistence in mice. Mol. Microbiol. 70: 762, https://doi.org/10.1111/J.1365-2958.2008.06445.X.Search in Google Scholar
Sheng, F., Jia, X., Yep, A., Preiss, J., and Geiger, J.H. (2009). The crystal structures of the open and catalytically competent closed conformation of Escherichia coli glycogen synthase. J. Biol. Chem. 284: 17796–17807, https://doi.org/10.1074/jbc.M809804200.Search in Google Scholar PubMed PubMed Central
Stadthagen, G., Sambou, T., Guerin, M., Barilone, N., Boudou, F., Korduláková, J., Charles, P., Alzari, P.M., Lemassu, A., Daffé, M., et al. (2007). Genetic basis for the biosynthesis of methylglucose lipopolysaccharides in Mycobacterium tuberculosis. J. Biol. Chem. 282: 27270–27276, https://doi.org/10.1074/jbc.M702676200.Search in Google Scholar PubMed
Stamler, R.A., Vereecke, D., Zhang, Y., Schilkey, F., Devitt, N., and Randall, J.J. (2016). Complete genome and plasmid sequences for Rhodococcus fascians D188 and draft sequences for Rhodococcus isolates PBTS 1 and PBTS 2. Genome Announc. 4: 495–511, https://doi.org/10.1128/genomea.00495-16.Search in Google Scholar PubMed PubMed Central
Syson, K., Stevenson, C.E.M., Lawson, D.M., and Bornemann, S. (2020). Structure of the Mycobacterium smegmatis a-maltose-1-phosphate synthase GlgM. Acta Crystallogr. Sec. F Struct. Biol. Commun. 76: 175–181, https://doi.org/10.1107/s2053230x20004343.Search in Google Scholar
Syson, K., Stevenson, C.E.M., Miah, F., Barclay, J.E., Tang, M., Gorelik, A., Rashid, A.M., Lawson, D.M., and Bornemann, S. (2016). Ligand-bound structures and site-directed mutagenesis identify the acceptor and secondary binding sites of Streptomyces coelicolor maltosyltransferase GlgE. J. Biol. Chem. 291: 21531–21540, https://doi.org/10.1074/jbc.m116.748160.Search in Google Scholar
Syson, K., Stevenson, C.E.M., Rashid, A.M., Saalbach, G., Tang, M., Tuukkanen, A., Svergun, D.I., Withers, S.G., Lawson, D.M., and Bornemann, S. (2014). Structural insight into how Streptomyces coelicolor maltosyl transferase GlgE binds α-maltose 1-phosphate and forms a maltosyl-enzyme intermediate. Biochemistry 53: 2494–2504, https://doi.org/10.1021/bi500183c.Search in Google Scholar PubMed PubMed Central
Tischler, D., Niescher, S., Kaschabek, S.R., and Schlömann, M. (2013). Trehalose phosphate synthases OtsA1 and OtsA2 of Rhodococcus opacus 1CP. FEMS Microbiol. Lett. 342: 113–122, https://doi.org/10.1111/1574-6968.12096.Search in Google Scholar PubMed
Valdez, H.A., Busi, M.V., Wayllace, N.Z., Parisi, G., Ugalde, R.A., and Gomez-Casati, D.F. (2008). Role of the N-terminal starch-binding domains in the kinetic properties of starch synthase III from Arabidopsis thaliana. Biochemistry 47: 3026–3032, https://doi.org/10.1021/bi702418h.Search in Google Scholar PubMed
van der Geize, R. and Dijkhuizen, L. (2004). Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr. Opin. Microbiol. 7: 255–261, https://doi.org/10.1016/j.mib.2004.04.001.Search in Google Scholar PubMed
van der Geize, R., Grommen, A.W.F., Hessels, G.I., Jacobs, A.A.C., and Dijkhuizen, L. (2011). The steroid catabolic pathway of the intracellular pathogen Rhodococcus equi is important for pathogenesis and a target for vaccine development. PLoS Pathog. 7: e1002181, https://doi.org/10.1371/journal.ppat.1002181.Search in Google Scholar PubMed PubMed Central
van der Geize, R., Yam, K., Heuser, T., Wilbrink, M.H., Hara, H., Anderton, M.C., Sim, E., Dijkhuizen, L., Davies, J.E., Mohn, W.W., et al. (2007). A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc. Natl. Acad. Sci. U.S.A. 104: 1947–1952, https://doi.org/10.1073/pnas.0605728104/suppl_file/05728fig4.pdf.Search in Google Scholar
Verma, M., Lal, D., Kaur, J., Saxena, A., Kaur, J., Anand, S., and Lal, R. (2013). Phylogenetic analyses of phylum Actinobacteria based on whole genome sequences. Res. Microbiol. 164: 718–728, https://doi.org/10.1016/j.resmic.2013.04.002.Search in Google Scholar PubMed
Villar-Palasf, C. and Guinovart, J.J. (1997). The role of glucose 6-phosphate in the control of glycogen synthase. FASEB J. 11:544–58,https://doi.org/10.1096/fasebj.11.7.9212078.Search in Google Scholar
Wang, L., Wang, M., Wise, M.J., Liu, Q., Yang, T., Zhu, Z., Li, C., Tan, X., Tang, D., and Wang, W. (2020). Recent progress in the structure of glycogen serving as a durable energy reserve in bacteria. World J. Microbiol. Biotechnol. 36: 14, https://doi.org/10.1007/S11274-019-2795-6.Search in Google Scholar PubMed
Wedel, N. and Soll, J. (1998). Evolutionary conserved light regulation of Calvin cycle activity by NADPH-mediated reversible phosphoribulokinase/CP12/glyceraldehyde-3-phosphate dehydrogenase complex dissociation. Proc. Natl. Acad. Sci. U.S.A. 95: 9699–9704, https://doi.org/10.1073/pnas.95.16.9699.Search in Google Scholar PubMed PubMed Central
Wu, R., Asención Diez, M.D., Figueroa, C.M., Machtey, M., Iglesias, A.A., Ballicora, M.A., and Liu, D. (2015). The crystal structure of Nitrosomonas europaea sucrose synthase reveals critical conformational changes and insights into sucrose metabolism in prokaryotes. J. Bacteriol. 197: 2734–2746, https://doi.org/10.1128/JB.00110-15.Search in Google Scholar PubMed PubMed Central
Yep, A., Ballicora, M.A., and Preiss, J. (2006). The ADP-glucose binding site of the Escherichia coli glycogen synthase. Arch. Biochem. Biophys. 453: 188–196, https://doi.org/10.1016/j.abb.2006.07.003.Search in Google Scholar PubMed
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/hsz-2023-0339).
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Research Articles/Short Communications
- Protein Structure and Function
- In-depth analysis of Gαs protein activity by probing different fluorescently labeled guanine nucleotides
- Biochemical evidence for conformational variants in the anti-viral and pro-metastatic protein IFITM1
- Study of two glycosyltransferases related to polysaccharide biosynthesis in Rhodococcus jostii RHA1
- Molecular Medicine
- KCTD5 regulates Ikaros degradation induced by chemotherapeutic drug etoposide in hematological cells
- Proteolysis
- Cathepsin X deficiency alters the processing and localisation of cathepsin L and impairs cleavage of a nuclear cathepsin L substrate
Articles in the same Issue
- Frontmatter
- Research Articles/Short Communications
- Protein Structure and Function
- In-depth analysis of Gαs protein activity by probing different fluorescently labeled guanine nucleotides
- Biochemical evidence for conformational variants in the anti-viral and pro-metastatic protein IFITM1
- Study of two glycosyltransferases related to polysaccharide biosynthesis in Rhodococcus jostii RHA1
- Molecular Medicine
- KCTD5 regulates Ikaros degradation induced by chemotherapeutic drug etoposide in hematological cells
- Proteolysis
- Cathepsin X deficiency alters the processing and localisation of cathepsin L and impairs cleavage of a nuclear cathepsin L substrate