Nitazoxanide inhibits osteosarcoma cells growth and metastasis by suppressing AKT/mTOR and Wnt/β-catenin signaling pathways
-
Caihong Ye
, Mengqi Wei , Huakun Huang , Yuping Wang , Lulu Zhang , Chunmei Yang , Yanran Huang and Jinyong Luo
Abstract
Osteosarcoma (OS) is the most prevalent malignant bone tumor with poor prognosis. Developing new drugs for the chemotherapy of OS has been a focal point and a major obstacle of OS treatment. Nitazoxanide (NTZ), a conventional anti-parasitic agent, has got increasingly noticed because of its favorable antitumor potential. Herein, we investigated the effect of NTZ on human OS cells in vitro and in vivo. The results obtained in vitro showed that NTZ inhibited the proliferation, migration and invasion, arrested cell cycle at G1 phase, while induced apoptosis of OS cells. Mechanistically, NTZ suppressed the activity of AKT/mTOR and Wnt/β-catenin signaling pathways of OS cells. Consistent with the results in vitro, orthotopic implantation model of 143B OS cells further confirmed that NTZ inhibited OS cells growth and lung metastasis in vivo. Notably, NTZ caused no apparent damage to normal cells/tissues. In conclusion, NTZ may inhibit tumor growth and metastasis of human OS cells through suppressing AKT/mTOR and Wnt/β-catenin signaling pathways.
Funding source: the Natural Science Foundation Project of Chongqing Science and Technology Commission There is no funder DOI
Award Identifier / Grant number: cstc2017jcyjAX0196
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This study was supported by the Natural Science Foundation Project of Chongqing Science and Technology Commission (no. cstc2017jcyjAX0196).
-
Conflict of interest statement: The authors declare that they have no competing interests.
References
Abbas, R. and Larisch, S. (2021). Killing by degradation: regulation of apoptosis by the ubiquitin-proteasome-system. Cells 10: 3465, doi:https://doi.org/10.3390/cells10123465.Search in Google Scholar PubMed PubMed Central
Allison, D.C., Carney, S.C., Ahlmann, E.R., Hendifar, A., Chawla, S., Fedenko, A., Angeles, C., and Menendez, L.R. (2012). A meta-analysis of osteosarcoma outcomes in the modern medical era. Sarcoma 2012: 704872, https://doi.org/10.1155/2012/704872.Search in Google Scholar PubMed PubMed Central
Barabás, L., Hritz, I., István, G., Tulassay, Z., and Herszényi, L. (2021). The behavior of MMP-2, MMP-7, MMP-9, and their inhibitors TIMP-1 and TIMP-2 in adenoma-colorectal cancer sequence. Dig. Dis. 39: 217–224, https://doi.org/10.1159/000511765.Search in Google Scholar PubMed
Bharti, C., Sharma, S., Goswami, N., Sharma, H., Rabbani, S.A., and Kumar, S. (2021). Role of nitazoxanide as a repurposed drug in the treatment and management of various diseases. Drugs Today 57: 455–473, https://doi.org/10.1358/dot.2021.57.7.3235211.Search in Google Scholar PubMed
Boice, A. and Bouchier-Hayes, L. (2020). Targeting apoptotic caspases in cancer. Biochim. Biophys. Acta Mol. Cell Res. 1867: 118688, https://doi.org/10.1016/j.bbamcr.2020.118688.Search in Google Scholar PubMed PubMed Central
Boulares, A.H., Yakovlev, A.G., Ivanova, V., Stoica, B.A., Wang, G., Iyer, S., and Smulson, M. (1999). Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J. Biol. Chem. 274: 22932–22940, https://doi.org/10.1074/jbc.274.33.22932.Search in Google Scholar PubMed
Brabletz, T., Kalluri, R., Nieto, M.A., and Weinberg, R.A. (2018). EMT in cancer. Nat. Rev. Cancer 18: 128–134, https://doi.org/10.1038/nrc.2017.118.Search in Google Scholar PubMed
Cano, A., Pérez-Moreno, M.A., Rodrigo, I., Locascio, A., Blanco, M.J., Del Barrio, M.G., Portillo, F., and Nieto, M.A. (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2: 76–83, https://doi.org/10.1038/35000025.Search in Google Scholar PubMed
Cheng, L., Wang, C., and Jing, J. (2016). Cell cycle kinases in osteosarcoma: potential for therapeutic intervention. Curr. Pharmaceut. Des. 22: 4830–4834, https://doi.org/10.2174/1381612822666160512151028.Search in Google Scholar PubMed
Corre, I., Verrecchia, F., Crenn, V., Redini, F., and Trichet, V. (2020). The osteosarcoma microenvironment: a complex but targetable ecosystem. Cells 9: 976, doi:https://doi.org/10.3390/cells9040976.Search in Google Scholar PubMed PubMed Central
Daina, A., Michielin, O., and Zoete, V. (2019). SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 47: W357–W364, https://doi.org/10.1093/nar/gkz382.Search in Google Scholar
Davis, A.P., Grondin, C.J., Johnson, R.J., Sciaky, D., Mcmorran, R., Wiegers, J., Wiegers, T.C., and Mattingly, C.J. (2019). The comparative toxicogenomics database: update 2019. Nucleic Acids Res. 47: D948–D954, https://doi.org/10.1093/nar/gky868.Search in Google Scholar
Di Santo, N. and Ehrisman, J. (2014). A functional perspective of nitazoxanide as a potential anticancer drug. Mutat. Res. 768: 16–21, https://doi.org/10.1016/j.mrfmmm.2014.05.005.Search in Google Scholar
Du Rusquec, P., Blonz, C., Frenel, J.S., and Campone, M. (2020). Targeting the PI3K/Akt/mTOR pathway in estrogen-receptor positive HER2 negative advanced breast cancer. Ther Adv Med Oncol 12: 1758835920940939, doi:https://doi.org/10.1177/1758835920940939.Search in Google Scholar
El-Huneidi, W., Bajbouj, K., Muhammad, J.S., Vinod, A., Shafarin, J., Khoder, G., Saleh, M.A., Taneera, J., and Abu-Gharbieh, E. (2021). Carnosic acid induces apoptosis and inhibits Akt/mTor signaling in human gastric cancer cell lines. Pharmaceuticals (Basel) 14: 230, doi:https://doi.org/10.3390/ph14030230.Search in Google Scholar
Fan-Minogue, H., Bodapati, S., Solow-Cordero, D., Fan, A., Paulmurugan, R., Massoud, T.F., Felsher, D.W., and Gambhir, S.S. (2013). A c-Myc activation sensor-based high-throughput drug screening identifies an antineoplastic effect of nitazoxanide. Mol. Cancer Therapeut. 12: 1896–1905, https://doi.org/10.1158/1535-7163.mct-12-1243.Search in Google Scholar
Gaspar, N., Occean, B.V., Pacquement, H., Bompas, E., Bouvier, C., Brisse, H.J., Castex, M.P., Cheurfa, N., Corradini, N., Delaye, J., et al.. (2018). Results of methotrexate-etoposide-ifosfamide based regimen (M-EI) in osteosarcoma patients included in the French OS2006/sarcome-09 study. Eur. J. Cancer 88: 57–66, https://doi.org/10.1016/j.ejca.2017.09.036.Search in Google Scholar
Hanahan, D. and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100: 57–70, https://doi.org/10.1016/s0092-8674(00)81683-9.Search in Google Scholar
Harrison, D.J., Geller, D.S., Gill, J.D., Lewis, V.O., and Gorlick, R. (2017). Current and future therapeutic approaches for osteosarcoma. Expert Rev. Anticancer Ther. 18: 39–50, https://doi.org/10.1080/14737140.2018.1413939.Search in Google Scholar PubMed
He, R., Du, S., Lei, T., Xie, X., and Wang, Y. (2020). Glycogen synthase kinase 3β in tumorigenesis and oncotherapy. Oncol. Rep. 44: 2373–2385, https://doi.org/10.3892/or.2020.7817.Search in Google Scholar PubMed PubMed Central
Hu, K., Dai, H.B., and Qiu, Z.L. (2016). mTOR signaling in osteosarcoma: oncogenesis and therapeutic aspects. Oncol. Rep. 36: 1219–1225, https://doi.org/10.3892/or.2016.4922.Search in Google Scholar PubMed
Hu, Z., Lai, Y., Ma, C., Zuo, L., Xiao, G., Gao, H., Xie, B., Huang, X., Gan, H., Huang, D., et al.. (2022). Cordyceps militaris extract induces apoptosis and pyroptosis via caspase-3/PARP/GSDME pathways in A549 cell line. Food Sci. Nutr. 10: 21–38, https://doi.org/10.1002/fsn3.2636.Search in Google Scholar PubMed PubMed Central
Kale, J., Osterlund, E.J., and Andrews, D.W. (2018). BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ. 25: 65–80, https://doi.org/10.1038/cdd.2017.186.Search in Google Scholar PubMed PubMed Central
Kim, K.M., Hussein, U.K., Park, S.H., Kang, M.A., Moon, Y.J., Zhang, Z., Song, Y., Park, H.S., Bae, J.S., Park, B.H., et al.. (2019). FAM83H is involved in stabilization of β-catenin and progression of osteosarcomas. J. Exp. Clin. Cancer Res. 38: 267, https://doi.org/10.1186/s13046-019-1274-0.Search in Google Scholar PubMed PubMed Central
Kim, S. (2016). Getting the most out of PubChem for virtual screening. Expert Opin. Drug Discov. 11: 843–855, https://doi.org/10.1080/17460441.2016.1216967.Search in Google Scholar PubMed PubMed Central
Kolligs, F.T., Bommer, G., and Göke, B. (2002). Wnt/beta-catenin/tcf signaling: a critical pathway in gastrointestinal tumorigenesis. Digestion 66: 131–144, https://doi.org/10.1159/000066755.Search in Google Scholar PubMed
Lambert, A.W. and Weinberg, R.A. (2021). Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat. Rev. Cancer 21: 325–338, https://doi.org/10.1038/s41568-021-00332-6.Search in Google Scholar PubMed
Li, H.B., Chen, J.K., Su, Z.X., Jin, Q.L., Deng, L.W., Huang, G., and Shen, J.N. (2021). Cordycepin augments the chemosensitivity of osteosarcoma to cisplatin by activating AMPK and suppressing the AKT signaling pathway. Cancer Cell Int. 21: 706, https://doi.org/10.1186/s12935-021-02411-y.Search in Google Scholar PubMed PubMed Central
Lim, S. and Kaldis, P. (2013). Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 140: 3079–3093, https://doi.org/10.1242/dev.091744.Search in Google Scholar PubMed
Ma, H., He, C., Cheng, Y., Yang, Z., Zang, J., Liu, J., and Chen, X. (2015). Localized co-delivery of doxorubicin, cisplatin, and methotrexate by thermosensitive hydrogels for enhanced osteosarcoma treatment. ACS Appl. Mater. Interfaces 7: 27040–27048, https://doi.org/10.1021/acsami.5b09112.Search in Google Scholar PubMed
Mathews, M.B., Bernstein, R.M., Franza, B.R.Jr., and Garrels, J.I. (1984). Identity of the proliferating cell nuclear antigen and cyclin. Nature 309: 374–376, https://doi.org/10.1038/309374a0.Search in Google Scholar PubMed
Matsumoto, A., Pasut, A., Matsumoto, M., Yamashita, R., Fung, J., Monteleone, E., Saghatelian, A., Nakayama, K.I., Clohessy, J.G., and Pandolfi, P.P. (2017). mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature 541: 228–232, https://doi.org/10.1038/nature21034.Search in Google Scholar PubMed
Meazza, C., Bastoni, S., and Scanagatta, P. (2020). What is the best clinical approach to recurrent/refractory osteosarcoma? Expert Rev. Anticancer Ther. 20: 415–428, https://doi.org/10.1080/14737140.2020.1760848.Search in Google Scholar PubMed
Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., and Hynes, R.O. (2016). The extracellular matrix: tools and insights for the “omics” era. Matrix Biol. 49: 10–24, https://doi.org/10.1016/j.matbio.2015.06.003.Search in Google Scholar PubMed PubMed Central
Nowak, E. and Bednarek, I. (2021). Aspects of the epigenetic regulation of EMT related to cancer metastasis. Cells 10: 3435, doi:https://doi.org/10.3390/cells10123435.Search in Google Scholar PubMed PubMed Central
Ocana, A., Vera-Badillo, F., Al-Mubarak, M., Templeton, A.J., Corrales-Sanchez, V., Diez-Gonzalez, L., Cuenca-Lopez, M.D., Seruga, B., Pandiella, A., and Amir, E. (2014). Activation of the PI3K/mTOR/AKT pathway and survival in solid tumors: systematic review and meta-analysis. PLoS One 9: e95219, https://doi.org/10.1371/journal.pone.0095219.Search in Google Scholar PubMed PubMed Central
Pandurangan, A.K. (2013). Potential targets for prevention of colorectal cancer: a focus on PI3K/Akt/mTOR and Wnt pathways. Asian Pac. J. Cancer Prev. APJCP 14: 2201–2205, https://doi.org/10.7314/apjcp.2013.14.4.2201.Search in Google Scholar PubMed
Pezeshkian, Z., Nobili, S., Peyravian, N., Shojaee, B., Nazari, H., Soleimani, H., Asadzadeh-Aghdaei, H., Ashrafian Bonab, M., Nazemalhosseini-Mojarad, E., and Mini, E. (2021). Insights into the role of matrix metalloproteinases in precancerous conditions and in colorectal cancer. Cancers 13: 6226, doi:https://doi.org/10.3390/cancers13246226.10.3390/cancers13246226Search in Google Scholar PubMed PubMed Central
Pollak, N., Lindner, A., Imig, D., Kuritz, K., Fritze, J.S., Decker, L., Heinrich, I., Stadager, J., Eisler, S., Stöhr, D., et al.. (2021). Cell cycle progression and transmitotic apoptosis resistance promote escape from extrinsic apoptosis. J. Cell Sci. 134: jcs258966, doi:https://doi.org/10.1242/jcs.258966.Search in Google Scholar PubMed
Rossignol, J.-F. (2014). Nitazoxanide: a first-in-class broad-spectrum antiviral agent. Antivir. Res. 110: 94–103, https://doi.org/10.1016/j.antiviral.2014.07.014.Search in Google Scholar PubMed PubMed Central
Senkowski, W., Zhang, X., Olofsson, M.H., Isacson, R., Höglund, U., Gustafsson, M., Nygren, P., Linder, S., Larsson, R., and Fryknäs, M. (2015). Three-dimensional cell culture-based screening identifies the anthelmintic drug nitazoxanide as a candidate for treatment of colorectal cancer. Mol. Cancer Therapeut. 14: 1504–1516, https://doi.org/10.1158/1535-7163.mct-14-0792.Search in Google Scholar
Shahcheraghi, S.H., Tchokonte-Nana, V., Lotfi, M., Lotfi, M., Ghorbani, A., and Sadeghnia, H.R. (2020). Wnt/β-catenin and PI3K/Akt/mTOR signaling pathways in glioblastoma: two main targets for drug design: a review. Curr. Pharmaceut. Des. 26: 1729–1741, doi:https://doi.org/10.2174/1381612826666200131100630.Search in Google Scholar PubMed
Smrke, A., Anderson, P.M., Gulia, A., Gennatas, S., Huang, P.H., and Jones, R.L. (2021). Future directions in the treatment of osteosarcoma. Cells 10: 172, doi:https://doi.org/10.3390/cells10010172.Search in Google Scholar PubMed PubMed Central
Song, Z., Wang, J., Su, Q., Luan, M., Chen, X., and Xu, X. (2021). The role of MMP-2 and MMP-9 in the metastasis and development of hypopharyngeal carcinoma. Braz. J. Otorhinolaryngol. 87: 521–528, https://doi.org/10.1016/j.bjorl.2019.10.009.Search in Google Scholar PubMed PubMed Central
Stelzer, G., Dalah, I., Stein, T.I., Satanower, Y., Rosen, N., Nativ, N., Oz-Levi, D., Olender, T., Belinky, F., Bahir, I., et al.. (2011). In-silico human genomics with GeneCards. Hum. Genom. 5: 709–717, https://doi.org/10.1186/1479-7364-5-6-709.Search in Google Scholar PubMed PubMed Central
Sun, H., Ou, T., Hu, J., Yang, Z., Lei, Q., Li, Y., Wang, G., Li, Y., Wu, K., Wang, S., et al.. (2021a). Nitazoxanide impairs mitophagy flux through ROS-mediated mitophagy initiation and lysosomal dysfunction in bladder cancer. Biochem. Pharmacol. 190: 114588, https://doi.org/10.1016/j.bcp.2021.114588.Search in Google Scholar PubMed
Sun, Y., Liu, Y., Ma, X., and Hu, H. (2021b). The influence of cell cycle regulation on chemotherapy. Int. J. Mol. Sci. 22, https://doi.org/10.3390/ijms22136923.Search in Google Scholar PubMed PubMed Central
Suski, J.M., Braun, M., Strmiska, V., and Sicinski, P. (2021). Targeting cell-cycle machinery in cancer. Cancer Cell 39: 759–778, https://doi.org/10.1016/j.ccell.2021.03.010.Search in Google Scholar PubMed PubMed Central
Szklarczyk, D., Morris, J.H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A., Doncheva, N.T., Roth, A., Bork, P., et al.. (2017). The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45: D362–D368, https://doi.org/10.1093/nar/gkw937.Search in Google Scholar PubMed PubMed Central
UniProt, C. (2021). UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49: D480–D489, doi:https://doi.org/10.1093/nar/gkaa1100.Search in Google Scholar PubMed PubMed Central
Wang, X., Shen, C., Liu, Z., Peng, F., Chen, X., Yang, G., Zhang, D., Yin, Z., Ma, J., Zheng, Z., et al.. (2018). Nitazoxanide, an antiprotozoal drug, inhibits late-stage autophagy and promotes ING1-induced cell cycle arrest in glioblastoma. Cell Death Dis. 9: 1032, https://doi.org/10.1038/s41419-018-1058-z.Search in Google Scholar PubMed PubMed Central
Wang, X., Shen, Y., Wang, S., Li, S., Zhang, W., Liu, X., Lai, L., Pei, J., and Li, H. (2017). PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res. 45: W356–W360, https://doi.org/10.1093/nar/gkx374.Search in Google Scholar PubMed PubMed Central
Wu, D. and Pan, W. (2010). GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem. Sci. 35: 161–168, https://doi.org/10.1016/j.tibs.2009.10.002.Search in Google Scholar PubMed PubMed Central
Yang, S., Liu, Y., Li, M.Y., Ng, C.S.H., Yang, S.L., Wang, S., Zou, C., Dong, Y., Du, J., Long, X., et al.. (2017). FOXP3 promotes tumor growth and metastasis by activating Wnt/β-catenin signaling pathway and EMT in non-small cell lung cancer. Mol. Cancer 16: 124, https://doi.org/10.1186/s12943-017-0700-1.Search in Google Scholar PubMed PubMed Central
Yue, C.H., Chen, C.H., Lee, W.T., Su, T.F., Pan, Y.R., Chen, Y.P., Huang, F.M., and Lee, C.J. (2020). Cetyltrimethylammonium bromide disrupts the mesenchymal characteristics of HA22T/VGH cells via inactivation of c-Met/PI3K/Akt/mTOR pathway. Anticancer Res. 40: 4513–4522, https://doi.org/10.21873/anticanres.14456.Search in Google Scholar PubMed
Zhang, K., Wu, S., Wu, H., Liu, L., and Zhou, J. (2021). Effect of the Notch1-mediated PI3K-Akt-mTOR pathway in human osteosarcoma. Aging (Albany NY) 13: 21090–21101, https://doi.org/10.18632/aging.203261.Search in Google Scholar PubMed PubMed Central
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Research Articles/Short Communications
- Cell Biology and Signaling
- Diselenide-derivative of 3-pyridinol targets redox enzymes leading to cell cycle deregulation and apoptosis in A549 cells
- NF90/NFAR (nuclear factors associated with dsRNA) – a new methylation substrate of the PRMT5-WD45-RioK1 complex
- PHF20L1 mediates PAX2 expression to promote angiogenesis and liver metastasis in colorectal cancer through regulating HIC1
- Nitazoxanide inhibits osteosarcoma cells growth and metastasis by suppressing AKT/mTOR and Wnt/β-catenin signaling pathways
- LncRNA-p21 suppresses cell proliferation and induces apoptosis in gastric cancer by sponging miR-514b-3p and up-regulating ARHGEF9 expression
- L-theanine induces skeletal muscle fiber type transformation by activation of prox1/CaN signaling pathway in C2C12 myotubes
- Proteolysis
- TMPRSS13 zymogen activation, surface localization, and shedding is regulated by proteolytic cleavage within the non-catalytic stem region
Articles in the same Issue
- Frontmatter
- Research Articles/Short Communications
- Cell Biology and Signaling
- Diselenide-derivative of 3-pyridinol targets redox enzymes leading to cell cycle deregulation and apoptosis in A549 cells
- NF90/NFAR (nuclear factors associated with dsRNA) – a new methylation substrate of the PRMT5-WD45-RioK1 complex
- PHF20L1 mediates PAX2 expression to promote angiogenesis and liver metastasis in colorectal cancer through regulating HIC1
- Nitazoxanide inhibits osteosarcoma cells growth and metastasis by suppressing AKT/mTOR and Wnt/β-catenin signaling pathways
- LncRNA-p21 suppresses cell proliferation and induces apoptosis in gastric cancer by sponging miR-514b-3p and up-regulating ARHGEF9 expression
- L-theanine induces skeletal muscle fiber type transformation by activation of prox1/CaN signaling pathway in C2C12 myotubes
- Proteolysis
- TMPRSS13 zymogen activation, surface localization, and shedding is regulated by proteolytic cleavage within the non-catalytic stem region