Abstract
Cytochrome P450s are an important group of enzymes catalyzing hydroxylation, and epoxidations reactions. In this work we describe the characterization of the CinA–CinC fusion enzyme system of a previously reported P450 using genetically fused heme (CinA) and FMN (CinC) enzyme domains from Citrobacter braaki. We observed that mixing individually inactivated heme (-) with FMN (-) domain in the CinA-10aa linker - CinC fusion constructs results in recovered activity and the formation of (2S)-2β-hydroxy,1,8-cineole (174 µM), a similar amount when compared to the fully functional fusion protein (176 µM). We also studied the effect of the fusion linker length in the activity complementation assay. Our results suggests an intermolecular interaction between heme and FMN parts from different CinA–CinC fusion protein similar to proposed mechanisms for P450 BM3 on the other hand, linker length plays a crucial influence on the activity of the fusion constructs. However, complementation assays show that inactive constructs with shorter linker lengths have functional subunits, and that the lack of activity might be due to incorrect interaction between fused enzymes.
Funding source: Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF)
Award Identifier / Grant number: F 519F
Acknowledgments
Our work was supported by the Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF) Otto von Guericke e. V. [grant number: F 519F].
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: Our work was supported by the Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF) Otto von Guericke e. V. [grant number: F 519F].
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Andorfer, M.C., Belsare, K.D., Girlich, A.M., and Lewis, J.C. (2017). Aromatic halogenation by using bifunctional flavin reductase-halogenase fusion enzymes. ChemBioChem, 18: 2099–2103, http://doi.org/10.1002/cbic.201700391.10.1002/cbic.201700391Search in Google Scholar PubMed PubMed Central
Belsare, K.D., Ruff, A.J., Martinez, R., Shivange, A.V., Mundhada, H., Holtmann, D., Schrader, J., and Schwaneberg, U. (2014). P-LinK: a method for generating multicomponent cytochrome P450 fusions with variable linker length. Biotechniques, 57: 13–20, http://doi.org/10.2144/000114187.10.2144/000114187Search in Google Scholar PubMed
Belsare, K.D., Horn, T., Ruff, A.J., Martinez, R., Magnusson, A., Holtmann, D., Schrader, J., and Schwaneberg, U. (2017). Directed evolution of cytochrome P450cin for mediated electron transfer. Protein Eng. Des. Sel., 30: 119–127, http://doi.org/10.1093/protein/gzw072.10.1093/protein/gzw072Search in Google Scholar PubMed
Çekiç, S.Z., Holtmann, D., Güven, G., Mangold, K.M., Schwaneberg, U., and Schrader, J. (2010). Mediated electron transfer with P450cin. Electrochem. Commun., 12: 1547–1550, http://doi.org/10.1016/j.elecom.2010.08.030.10.1016/j.elecom.2010.08.030Search in Google Scholar
Govindaraj, S., and Poulos, T.L. (1995). Role of the linker region connecting the reductase and heme domains in cytochrome P450BM-3. Biochemistry, 34: 11221–11226, http://doi.org/10.1021/bi00035a031.10.1021/bi00035a031Search in Google Scholar PubMed
Govindaraj, S. and Poulos, T.L. (1996). Probing the structure of the linker connecting the reductase and heme domains of cytochrome P450BM‐3 using site‐directed mutagenesis. Protein Sci., 5: 1389–1393, http://doi.org/10.1002/pro.5560050717.10.1002/pro.5560050717Search in Google Scholar PubMed PubMed Central
Hannemann, F., Bichet, A., Ewen, K.M., and Bernhardt, R. (2007). Cytochrome P450 systems —biological variations of electron transport chains. Biochim. Biophys. Acta Gen. Subj., 1770: 330–344, http://doi.org/10.1016/j.bbagen.2006.07.017.10.1016/j.bbagen.2006.07.017Search in Google Scholar PubMed
Hawkes, D.B., Adams, G.W., Burlingame, A.L., de Montellano, P.R.O., and De Voss, J.J. (2002). Cytochrome P450cin (CYP176A), isolation, expression, and characterization. J. Biol. Chem., 277: 27725–27732, http://doi.org/10.1074/jbc.m203382200.10.1074/jbc.M203382200Search in Google Scholar PubMed
Hoffmann, S.M., Weissenborn, M.J., Gricman, L., Notonier, S., Pleiss, J., and Hauer, B. (2016) The impact of linker length on P450 fusion constructs: activity, stability and coupling. ChemCatChem, 8: 1591–1597, http://doi.org/10.1002/cctc.201501397.10.1002/cctc.201501397Search in Google Scholar
Kimmich, N., Das, A., Sevrioukova, I., Meharenna, Y., Sligar, S.G., and Poulos, T.L. (2007). Electron transfer between cytochrome P450cin and its FMN-containing redox partner, cindoxin. J. Biol. Chem., 282: 27006–27011, http://doi.org/10.1074/jbc.m703790200.10.1074/jbc.M703790200Search in Google Scholar PubMed
Kitazume, T., Haines, D.C., Estabrook, R.W., Chen, B., and Peterson, J.A. (2007). Obligatory intermolecular electron-transfer from FAD to FMN in dimeric P450BM-3. Biochemistry, 46: 11892–11901, http://doi.org/10.1021/bi701031r.10.1021/bi701031rSearch in Google Scholar PubMed
Krieger, E., Koraimann, G., and Vriend, G. (2002). Increasing the precision of comparative models with YASARA NOVA—a self‐parameterizing force field. Proteins Struct. Funct. Bioinformat., 47: 393–402, http://doi.org/10.1002/prot.10104.10.1002/prot.10104Search in Google Scholar PubMed
Lee, H.J.Z., Wong, S.H., Stok, J.E., Bagster, S.A., Backett, J., Clegg, J.K., Brock, A.J., De Voss, J.J., and Bell, S.G. (2019). Selective hydroxylation of 1,8-cineole and 1,4-cineole using bacterial P450 variants. Arch. Biochem. Biophys., 663: 54–63, http://doi.org/10.1016/j.abb.2018.12.025.10.1016/j.abb.2018.12.025Search in Google Scholar PubMed
Madrona, Y., Hollingsworth, S.A., Tripathi, S., Fields, J.B., Rwigema, J.C.N., Tobias, D.J., and Poulos, T.L. (2014). Crystal structure of cindoxin, the P450cin redox partner. Biochemistry, 53: 1435–1446, http://doi.org/10.1021/bi500010m.10.1021/bi500010mSearch in Google Scholar PubMed PubMed Central
Meharenna, Y.T., Li, H., Hawkes, D.B., Pearson, A.G., De Voss, J., and Poulos, T.L. (2004). Crystal structure of P450cin in a complex with its substrate, 1,8-cineole, a close structural homologue to D-camphor, the substrate for P450cam. Biochemistry, 43: 9487–9494, http://doi.org/10.1021/bi049293p.10.1021/bi049293pSearch in Google Scholar PubMed
Neeli, R., Girvan, H.M., Lawrence, A., Warren, M.J., Leys, D., Scrutton, N.S., and Munro, A.W. (2005). The dimeric form of flavocytochrome P450 BM3 is catalytically functional as a fatty acid hydroxylase. FEBS Lett., 25: 5582–5588, http://doi.org/10.1016/j.febslet.2005.09.023.10.1016/j.febslet.2005.09.023Search in Google Scholar PubMed
Peters, C., Rudroff, F., Mihovilovic, M.D., and Bornscheuer, U.T. (2017). Fusion proteins of an enoate reductase and a Baeyer-Villiger monooxygenase faciltate the synthesis of a chiral lactones. Biol. Chem., 398: 1–24. http://doi.org/10.1515/hsz-2016-0150.10.1515/hsz-2016-0150Search in Google Scholar PubMed
Robin, A., Roberts, G.A., Kisch, J., Sabbadin, F., Grogan, G., Bruce, N., Turner, N.J., and Flitsch, S.L. (2009). Engineering and improvement of the efficiency of a chimeric [P450cam-RhFRed reductase domain] enzyme. Chem. Comm., 18: 2478–2480. http://doi.org/10.1039/b901716j.10.1039/b901716jSearch in Google Scholar PubMed
Sevrioukova, I.F., Li, H., Zhang, H., Peterson, J.A., and Poulos, T.L. (1999). Structure of a cytochrome P450–redox partner electron-transfer complex. Proc. Natl. Acad. Sci. USA, 96: 1863–1868, http://doi.org/10.1073/pnas.96.5.1863.10.1073/pnas.96.5.1863Search in Google Scholar PubMed PubMed Central
Stok, J.E., Giang, P.D., Wong, S.H., and De Voss, J.J. (2019). Exploring the substrate specificity of cytochrome P450cin. Arch. Biochem. Biophys., 672: 54–63, http://doi.org/10.1016/j.abb.2019.07.025.10.1016/j.abb.2019.07.025Search in Google Scholar PubMed
Stuehr, D.J. (1999). Mammalian nitric oxide synthases. Biochim. Biophys. Acta Bioenerget., 1411: 217–230, http://doi.org/10.1016/s0005-2728(99)00016-x.10.1002/9780470123119.ch8Search in Google Scholar PubMed
Urlacher, V.B. and Girhard, M. (2019). Cytochrome P450 monooxygenases in biotechnology and synthetic biology. Trends. Biotechnol., 37: 26–36. http://doi.org/10.1016/j.tibtech.2019.01.001.10.1016/j.tibtech.2019.01.001Search in Google Scholar PubMed
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2020-0134).
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Reviews
- The role of mitochondrial ATP synthase in cancer
- Redox-dependent and independent effects of thioredoxin interacting protein
- Hsp70-mediated quality control: should I stay or should I go?
- Research articles/Short communications
- Protein structure and function
- Insights on intermolecular FMN-heme domain interaction and the role of linker length in cytochrome P450cin fusion proteins
- Cell biology and signaling
- Zinc-dependent changes in oxidative and endoplasmic reticulum stress during cardiomyocyte hypoxia/reoxygenation
- Histone deacetylase 1 regulates the malignancy of oral cancer cells via miR-154-5p/PCNA axis
- The impact of oxytocin on thiol/disulphide and malonyldialdehyde/glutathione homeostasis in stressed rats
- Individual and combined effects of GIP and xenin on differentiation, glucose uptake and lipolysis in 3T3-L1 adipocytes
Articles in the same Issue
- Frontmatter
- Reviews
- The role of mitochondrial ATP synthase in cancer
- Redox-dependent and independent effects of thioredoxin interacting protein
- Hsp70-mediated quality control: should I stay or should I go?
- Research articles/Short communications
- Protein structure and function
- Insights on intermolecular FMN-heme domain interaction and the role of linker length in cytochrome P450cin fusion proteins
- Cell biology and signaling
- Zinc-dependent changes in oxidative and endoplasmic reticulum stress during cardiomyocyte hypoxia/reoxygenation
- Histone deacetylase 1 regulates the malignancy of oral cancer cells via miR-154-5p/PCNA axis
- The impact of oxytocin on thiol/disulphide and malonyldialdehyde/glutathione homeostasis in stressed rats
- Individual and combined effects of GIP and xenin on differentiation, glucose uptake and lipolysis in 3T3-L1 adipocytes