Home Life Sciences Insights on intermolecular FMN-heme domain interaction and the role of linker length in cytochrome P450cin fusion proteins
Article
Licensed
Unlicensed Requires Authentication

Insights on intermolecular FMN-heme domain interaction and the role of linker length in cytochrome P450cin fusion proteins

  • Ketaki D. Belsare , Anna Joëlle Ruff , Ronny Martinez ORCID logo EMAIL logo and Ulrich Schwaneberg
Published/Copyright: July 16, 2020

Abstract

Cytochrome P450s are an important group of enzymes catalyzing hydroxylation, and epoxidations reactions. In this work we describe the characterization of the CinA–CinC fusion enzyme system of a previously reported P450 using genetically fused heme (CinA) and FMN (CinC) enzyme domains from Citrobacter braaki. We observed that mixing individually inactivated heme (-) with FMN (-) domain in the CinA-10aa linker - CinC fusion constructs results in recovered activity and the formation of (2S)-2β-hydroxy,1,8-cineole (174 µM), a similar amount when compared to the fully functional fusion protein (176 µM). We also studied the effect of the fusion linker length in the activity complementation assay. Our results suggests an intermolecular interaction between heme and FMN parts from different CinA–CinC fusion protein similar to proposed mechanisms for P450 BM3 on the other hand, linker length plays a crucial influence on the activity of the fusion constructs. However, complementation assays show that inactive constructs with shorter linker lengths have functional subunits, and that the lack of activity might be due to incorrect interaction between fused enzymes.


Corresponding author: Ronny Martinez, Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen, D-52074, Germany; and Departamento de Ingeniería en Alimentos, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena, 1720010, Chile, E-mail:

Funding source: Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF)

Award Identifier / Grant number: F 519F

Acknowledgments

Our work was supported by the Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF) Otto von Guericke e. V. [grant number: F 519F].

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Our work was supported by the Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF) Otto von Guericke e. V. [grant number: F 519F].

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Andorfer, M.C., Belsare, K.D., Girlich, A.M., and Lewis, J.C. (2017). Aromatic halogenation by using bifunctional flavin reductase-halogenase fusion enzymes. ChemBioChem, 18: 2099–2103, http://doi.org/10.1002/cbic.201700391.10.1002/cbic.201700391Search in Google Scholar PubMed PubMed Central

Belsare, K.D., Ruff, A.J., Martinez, R., Shivange, A.V., Mundhada, H., Holtmann, D., Schrader, J., and Schwaneberg, U. (2014). P-LinK: a method for generating multicomponent cytochrome P450 fusions with variable linker length. Biotechniques, 57: 13–20, http://doi.org/10.2144/000114187.10.2144/000114187Search in Google Scholar PubMed

Belsare, K.D., Horn, T., Ruff, A.J., Martinez, R., Magnusson, A., Holtmann, D., Schrader, J., and Schwaneberg, U. (2017). Directed evolution of cytochrome P450cin for mediated electron transfer. Protein Eng. Des. Sel., 30: 119–127, http://doi.org/10.1093/protein/gzw072.10.1093/protein/gzw072Search in Google Scholar PubMed

Çekiç, S.Z., Holtmann, D., Güven, G., Mangold, K.M., Schwaneberg, U., and Schrader, J. (2010). Mediated electron transfer with P450cin. Electrochem. Commun., 12: 1547–1550, http://doi.org/10.1016/j.elecom.2010.08.030.10.1016/j.elecom.2010.08.030Search in Google Scholar

Govindaraj, S., and Poulos, T.L. (1995). Role of the linker region connecting the reductase and heme domains in cytochrome P450BM-3. Biochemistry, 34: 11221–11226, http://doi.org/10.1021/bi00035a031.10.1021/bi00035a031Search in Google Scholar PubMed

Govindaraj, S. and Poulos, T.L. (1996). Probing the structure of the linker connecting the reductase and heme domains of cytochrome P450BM‐3 using site‐directed mutagenesis. Protein Sci., 5: 1389–1393, http://doi.org/10.1002/pro.5560050717.10.1002/pro.5560050717Search in Google Scholar PubMed PubMed Central

Hannemann, F., Bichet, A., Ewen, K.M., and Bernhardt, R. (2007). Cytochrome P450 systems —biological variations of electron transport chains. Biochim. Biophys. Acta Gen. Subj., 1770: 330–344, http://doi.org/10.1016/j.bbagen.2006.07.017.10.1016/j.bbagen.2006.07.017Search in Google Scholar PubMed

Hawkes, D.B., Adams, G.W., Burlingame, A.L., de Montellano, P.R.O., and De Voss, J.J. (2002). Cytochrome P450cin (CYP176A), isolation, expression, and characterization. J. Biol. Chem., 277: 27725–27732, http://doi.org/10.1074/jbc.m203382200.10.1074/jbc.M203382200Search in Google Scholar PubMed

Hoffmann, S.M., Weissenborn, M.J., Gricman, L., Notonier, S., Pleiss, J., and Hauer, B. (2016) The impact of linker length on P450 fusion constructs: activity, stability and coupling. ChemCatChem, 8: 1591–1597, http://doi.org/10.1002/cctc.201501397.10.1002/cctc.201501397Search in Google Scholar

Kimmich, N., Das, A., Sevrioukova, I., Meharenna, Y., Sligar, S.G., and Poulos, T.L. (2007). Electron transfer between cytochrome P450cin and its FMN-containing redox partner, cindoxin. J. Biol. Chem., 282: 27006–27011, http://doi.org/10.1074/jbc.m703790200.10.1074/jbc.M703790200Search in Google Scholar PubMed

Kitazume, T., Haines, D.C., Estabrook, R.W., Chen, B., and Peterson, J.A. (2007). Obligatory intermolecular electron-transfer from FAD to FMN in dimeric P450BM-3. Biochemistry, 46: 11892–11901, http://doi.org/10.1021/bi701031r.10.1021/bi701031rSearch in Google Scholar PubMed

Krieger, E., Koraimann, G., and Vriend, G. (2002). Increasing the precision of comparative models with YASARA NOVA—a self‐parameterizing force field. Proteins Struct. Funct. Bioinformat., 47: 393–402, http://doi.org/10.1002/prot.10104.10.1002/prot.10104Search in Google Scholar PubMed

Lee, H.J.Z., Wong, S.H., Stok, J.E., Bagster, S.A., Backett, J., Clegg, J.K., Brock, A.J., De Voss, J.J., and Bell, S.G. (2019). Selective hydroxylation of 1,8-cineole and 1,4-cineole using bacterial P450 variants. Arch. Biochem. Biophys., 663: 54–63, http://doi.org/10.1016/j.abb.2018.12.025.10.1016/j.abb.2018.12.025Search in Google Scholar PubMed

Madrona, Y., Hollingsworth, S.A., Tripathi, S., Fields, J.B., Rwigema, J.C.N., Tobias, D.J., and Poulos, T.L. (2014). Crystal structure of cindoxin, the P450cin redox partner. Biochemistry, 53: 1435–1446, http://doi.org/10.1021/bi500010m.10.1021/bi500010mSearch in Google Scholar PubMed PubMed Central

Meharenna, Y.T., Li, H., Hawkes, D.B., Pearson, A.G., De Voss, J., and Poulos, T.L. (2004). Crystal structure of P450cin in a complex with its substrate, 1,8-cineole, a close structural homologue to D-camphor, the substrate for P450cam. Biochemistry, 43: 9487–9494, http://doi.org/10.1021/bi049293p.10.1021/bi049293pSearch in Google Scholar PubMed

Neeli, R., Girvan, H.M., Lawrence, A., Warren, M.J., Leys, D., Scrutton, N.S., and Munro, A.W. (2005). The dimeric form of flavocytochrome P450 BM3 is catalytically functional as a fatty acid hydroxylase. FEBS Lett., 25: 5582–5588, http://doi.org/10.1016/j.febslet.2005.09.023.10.1016/j.febslet.2005.09.023Search in Google Scholar PubMed

Peters, C., Rudroff, F., Mihovilovic, M.D., and Bornscheuer, U.T. (2017). Fusion proteins of an enoate reductase and a Baeyer-Villiger monooxygenase faciltate the synthesis of a chiral lactones. Biol. Chem., 398: 1–24. http://doi.org/10.1515/hsz-2016-0150.10.1515/hsz-2016-0150Search in Google Scholar PubMed

Robin, A., Roberts, G.A., Kisch, J., Sabbadin, F., Grogan, G., Bruce, N., Turner, N.J., and Flitsch, S.L. (2009). Engineering and improvement of the efficiency of a chimeric [P450cam-RhFRed reductase domain] enzyme. Chem. Comm., 18: 2478–2480. http://doi.org/10.1039/b901716j.10.1039/b901716jSearch in Google Scholar PubMed

Sevrioukova, I.F., Li, H., Zhang, H., Peterson, J.A., and Poulos, T.L. (1999). Structure of a cytochrome P450–redox partner electron-transfer complex. Proc. Natl. Acad. Sci. USA, 96: 1863–1868, http://doi.org/10.1073/pnas.96.5.1863.10.1073/pnas.96.5.1863Search in Google Scholar PubMed PubMed Central

Stok, J.E., Giang, P.D., Wong, S.H., and De Voss, J.J. (2019). Exploring the substrate specificity of cytochrome P450cin. Arch. Biochem. Biophys., 672: 54–63, http://doi.org/10.1016/j.abb.2019.07.025.10.1016/j.abb.2019.07.025Search in Google Scholar PubMed

Stuehr, D.J. (1999). Mammalian nitric oxide synthases. Biochim. Biophys. Acta Bioenerget., 1411: 217–230, http://doi.org/10.1016/s0005-2728(99)00016-x.10.1002/9780470123119.ch8Search in Google Scholar PubMed

Urlacher, V.B. and Girhard, M. (2019). Cytochrome P450 monooxygenases in biotechnology and synthetic biology. Trends. Biotechnol., 37: 26–36. http://doi.org/10.1016/j.tibtech.2019.01.001.10.1016/j.tibtech.2019.01.001Search in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2020-0134).


Received: 2020-02-12
Accepted: 2020-05-25
Published Online: 2020-07-16
Published in Print: 2020-10-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2020-0134/html
Scroll to top button