Startseite Lebenswissenschaften Power to the daughters – mitochondrial and mtDNA transmission during cell division
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Power to the daughters – mitochondrial and mtDNA transmission during cell division

  • Ina Aretz , Christopher Jakubke und Christof Osman ORCID logo EMAIL logo
Veröffentlicht/Copyright: 9. Dezember 2019

Abstract

Mitochondria supply virtually all eukaryotic cells with energy through ATP production by oxidative phosphoryplation (OXPHOS). Accordingly, maintenance of mitochondrial function is fundamentally important to sustain cellular health and various diseases have been linked to mitochondrial dysfunction. Biogenesis of OXPHOS complexes crucially depends on mitochondrial DNA (mtDNA) that encodes essential subunits of the respiratory chain and is distributed in multiple copies throughout the mitochondrial network. During cell division, mitochondria, including mtDNA, need to be accurately apportioned to daughter cells. This process requires an intimate and coordinated interplay between the cell cycle, mitochondrial dynamics and the replication and distribution of mtDNA. Recent years have seen exciting advances in the elucidation of the mechanisms that facilitate these processes and essential key players have been identified. Moreover, segregation of qualitatively distinct mitochondria during asymmetric cell division is emerging as an important quality control step, which secures the maintenance of a healthy cell population.

Acknowledgments

We thank Simon Schrott for critical comments on the manuscript. This work is supported by a grant from the European Research Council (ERCStG-714739 IlluMitoDNA).

References

Altmann, K., Frank, M., Neumann, D., Jakobs, S., and Westermann, B. (2008). The class V myosin motor protein, Myo2, plays a major role in mitochondrial motility in Saccharomyces cerevisiae. J. Cell Biol. 181, 119–130.10.1083/jcb.200709099Suche in Google Scholar

Archibald, J.M. (2015). Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25, R911–R921.10.1016/j.cub.2015.07.055Suche in Google Scholar

Bogenhagen, D. and Clayton, D.A. (1977). Mouse L cell mitochondrial DNA molecules are selected randomly for replication throughout the cell cycle. Cell 11, 719–727.10.1016/0092-8674(77)90286-0Suche in Google Scholar

Bogenhagen, D.F., Rousseau, D., and Burke, S. (2008). The layered structure of human mitochondrial DNA nucleoids. J. Biol. Chem. 283, 3665–3675.10.1074/jbc.M708444200Suche in Google Scholar PubMed

Boldogh, I.R., Yang, H.C., Nowakowski, W.D., Karmon, S.L., Hays, L.G., Yates, J.R., and Pon, L.A. (2001). Arp2/3 complex and actin dynamics are required for actin-based mitochondrial motility in yeast. Proc. Natl. Acad. Sci. U. S. A. 98, 3162–3167.10.1073/pnas.051494698Suche in Google Scholar PubMed PubMed Central

Chakraborty, A., Lyonnais, S., Battistini, F., Hospital, A., Medici, G., Prohens, R., Orozco, M., Vilardell, J., and Solà, M. (2017). DNA structure directs positioning of the mitochondrial genome packaging protein Abf2p. Nucleic Acids Res. 45, 951–967.10.1093/nar/gkw1147Suche in Google Scholar PubMed PubMed Central

Chernyakov, I., Santiago-Tirado, F., and Bretscher, A. (2013). Active segregation of yeast mitochondria by Myo2 is essential and mediated by Mmr1 and Ypt11. Curr. Biol. 23, 1818–1824.10.1016/j.cub.2013.07.053Suche in Google Scholar PubMed PubMed Central

Couvillion, M.T., Soto, I.C., Shipkovenska, G., and Churchman, L.S. (2016). Synchronized mitochondrial and cytosolic translation programs. Nature 533, 499–503.10.1038/nature18015Suche in Google Scholar PubMed PubMed Central

Cree, L.M., Samuels, D.C., de Sousa Lopes, S.C., Rajasimha, H.K., Wonnapinij, P., Mann, J.R., Dahl, H.-H.M., and Chinnery, P.F. (2008). A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nat. Genet. 40, 249–254.10.1038/ng.2007.63Suche in Google Scholar PubMed

Fehrenbacher, K.L., Yang, H.-C., Gay, A.C., Huckaba, T.M., and Pon, L.A. (2004). Live cell imaging of mitochondrial movement along actin cables in budding yeast. Curr. Biol. 14, 1996–2004.10.1016/j.cub.2004.11.004Suche in Google Scholar PubMed

Förtsch, J., Hummel, E., Krist, M., and Westermann, B. (2011). The myosin-related motor protein Myo2 is an essential mediator of bud-directed mitochondrial movement in yeast. J. Cell Biol. 194, 473–488.10.1083/jcb.201012088Suche in Google Scholar

Foury, F., Roganti, T., Lecrenier, N., and Purnelle, B. (1998). The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett. 440, 325–331.10.1016/S0014-5793(98)01467-7Suche in Google Scholar

Frederick, R.L., McCaffery, J.M., Cunningham, K.W., Okamoto, K., and Shaw, J.M. (2004). Yeast Miro GTPase, Gem1p, regulates mitochondrial morphology via a novel pathway. J. Cell Biol. 167, 87–98.10.1083/jcb.200405100Suche in Google Scholar PubMed PubMed Central

Friedman, J.R., Lackner, L.L., West, M., DiBenedetto, J.R., Nunnari, J., and Voeltz, G.K. (2011). ER tubules mark sites of mitochondrial division. Science 334, 358–362.10.1126/science.1207385Suche in Google Scholar PubMed PubMed Central

Gerhold, J.M., Cansiz-Arda, Ş., Lõhmus, M., Engberg, O., Reyes, A., van Rennes, H., Sanz, A., Holt, I.J., Cooper, H.M., and Spelbrink, J.N. (2015). Human mitochondrial DNA-protein complexes attach to a cholesterol-rich membrane structure. Sci. Rep. 5, 15292.10.1038/srep15292Suche in Google Scholar PubMed PubMed Central

Gilquin, B., Taillebourg, E., Cherradi, N., Hubstenberger, A., Gay, O., Merle, N., Assard, N., Fauvarque, M.-O., Tomohiro, S., Kuge, O., et al. (2010). The AAA+ ATPase ATAD3A controls mitochondrial dynamics at the interface of the inner and outer membranes. Mol. Cell. Biol. 30, 1984–1996.10.1128/MCB.00007-10Suche in Google Scholar PubMed PubMed Central

Göke, A., Schrott, S., Mizrak, A., Belyy, V., Osman, C., and Walter, P. (2019). Mrx6 regulates mitochondrial DNA copy number in S. cerevisiae by engaging the evolutionarily conserved Lon protease Pim1. Mol. Biol. Cell na, PMID: 31532710. DOI: 10.1091/mbc.E19-08-0470.10.1091/mbc.E19-08-0470Suche in Google Scholar PubMed PubMed Central

Gustafsson, C.M., Falkenberg, M., and Larsson, N.-G. (2016). Maintenance and expression of mammalian mitochondrial DNA. Annu. Rev. Biochem. 85, 133–160.10.1146/annurev-biochem-060815-014402Suche in Google Scholar PubMed

Haag-Liautard, C., Coffey, N., Houle, D., Lynch, M., Charlesworth, B., and Keightley, P.D. (2008). Direct estimation of the mitochondrial DNA mutation rate in Drosophila melanogaster. PLoS Biol. 6, e204.10.1371/journal.pbio.0060204Suche in Google Scholar PubMed PubMed Central

Harbauer, A.B., Opalińska, M., Gerbeth, C., Herman, J.S., Rao, S., Schönfisch, B., Guiard, B., Schmidt, O., Pfanner, N., and Meisinger, C. (2014). Mitochondria. Cell cycle-dependent regulation of mitochondrial preprotein translocase. Science 346, 1109–1113.10.1126/science.1261253Suche in Google Scholar PubMed

He, J., Mao, C.-C., Reyes, A., Sembongi, H., Di Re, M., Granycome, C., Clippingdale, A.B., Fearnley, I.M., Harbour, M., Robinson, A.J., et al. (2007). The AAA+protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization. J. Cell Biol. 176, 141–146.10.1083/jcb.200609158Suche in Google Scholar PubMed PubMed Central

Herrmann, J.M., Woellhaf, M.W., and Bonnefoy, N. (2013). Control of protein synthesis in yeast mitochondria: the concept of translational activators. Biochim. Biophys. Acta – Mol. Cell Res. 1833, 286–294.10.1016/j.bbamcr.2012.03.007Suche in Google Scholar PubMed

Higuchi, R., Vevea, J.D., Swayne, T.C., Chojnowski, R., Hill, V., Boldogh, I.R., and Pon, L.A. (2013). Actin dynamics affect mitochondrial quality control and aging in budding yeast. Curr. Biol. 23, 2417–2422.10.1016/j.cub.2013.10.022Suche in Google Scholar PubMed PubMed Central

Higuchi-Sanabria, R., Pernice, W.M., Vevea, J.D., Alessi Wolken, D.M., Boldogh, I.R., and Pon, L.A. (2014). Role of asymmetric cell division in lifespan control in Saccharomyces cerevisiae. FEMS Yeast Res. 14, 1133–1146.10.1111/1567-1364.12216Suche in Google Scholar PubMed PubMed Central

Hoffmann, A., Käser, S., Jakob, M., Amodeo, S., Peitsch, C., Týč, J., Vaughan, S., Zuber, B., Schneider, A., and Ochsenreiter, T. (2018). Molecular model of the mitochondrial genome segregation machinery in Trypanosoma brucei. Proc. Natl. Acad. Sci. U. S. A. 115, E1809–E1818.10.1073/pnas.1716582115Suche in Google Scholar PubMed PubMed Central

Iborra, F.J., Kimura, H., and Cook, P.R. (2004). The functional organization of mitochondrial genomes in human cells. BMC Biol. 14, 1–14.Suche in Google Scholar

Issop, L., Fan, J., Lee, S., Rone, M.B., Basu, K., Mui, J., and Papadopoulos, V. (2015). Mitochondria-associated membrane formation in hormone-stimulated Leydig cell steroidogenesis: role of ATAD3. Endocrinology 156, 334–345.10.1210/en.2014-1503Suche in Google Scholar PubMed

Itoh, T., Watabe, A., Toh-e, A., and Matsui, Y. (2002). Complex formation with Ypt11p, a rab-type small GTPase, is essential to facilitate the function of Myo2p, a class V myosin, in mitochondrial distribution in Saccharomyces cerevisiae. Mol. Cell. Biol. 22, 7744–7757.10.1128/MCB.22.22.7744-7757.2002Suche in Google Scholar PubMed PubMed Central

Itoh, T., Toh-E, A., and Matsui, Y. (2004). Mmr1p is a mitochondrial factor for Myo2p-dependent inheritance of mitochondria in the budding yeast. EMBO J. 23, 2520–2530.10.1038/sj.emboj.7600271Suche in Google Scholar PubMed PubMed Central

Jajoo, R., Jung, Y., Huh, D., Viana, M.P., Rafelski, S.M., Springer, M., and Paulsson, J. (2016). Accurate concentration control of mitochondria and nucleoids. Science 351, 169–172.10.1126/science.aaa8714Suche in Google Scholar PubMed PubMed Central

Jensen, R.E. and Englund, P.T. (2012). Network news: the replication of kinetoplast DNA. Annu. Rev. Microbiol. 66, 473–491.10.1146/annurev-micro-092611-150057Suche in Google Scholar PubMed

Jokinen, R., Marttinen, P., Stewart, J.B., Neil Dear, T., and Battersby, B.J. (2016). Tissue-specific modulation of mitochondrial DNA segregation by a defect in mitochondrial division. Hum. Mol. Genet. 25, 706–714.10.1093/hmg/ddv508Suche in Google Scholar PubMed

Kanfer, G., Courthéoux, T., Peterka, M., Meier, S., Soste, M., Melnik, A., Reis, K., Aspenström, P., Peter, M., Picotti, P., et al. (2015). Mitotic redistribution of the mitochondrial network by Miro and Cenp-F. Nat. Commun. 6, 8015.10.1038/ncomms9015Suche in Google Scholar PubMed PubMed Central

Katajisto, P., Döhla, J., Chaffer, C.L., Pentinmikko, N., Marjanovic, N., Iqbal, S., Zoncu, R., Chen, W., Weinberg, R.A., and Sabatini, D.M. (2015). Stem cells. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science 348, 340–343.10.1126/science.1260384Suche in Google Scholar PubMed PubMed Central

Klecker, T., Scholz, D., Förtsch, J., and Westermann, B. (2013). The yeast cell cortical protein Num1 integrates mitochondrial dynamics into cellular architecture. J. Cell Sci. 126, 2924–2930.10.1242/jcs.126045Suche in Google Scholar PubMed

Klinger, H., Rinnerthaler, M., Lam, Y.T., Laun, P., Heeren, G., Klocker, A., Simon-Nobbe, B., Dickinson, J.R., Dawes, I.W., and Breitenbach, M. (2010). Quantitation of (a)symmetric inheritance of functional and of oxidatively damaged mitochondrial aconitase in the cell division of old yeast mother cells. Exp. Gerontol. 45, 533–542.10.1016/j.exger.2010.03.016Suche in Google Scholar PubMed

Kornmann, B., Currie, E., Collins, S.R., Schuldiner, M., Nunnari, J., Weissman, J.S., and Walter, P. (2009). An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325, 477–481.10.1126/science.1175088Suche in Google Scholar PubMed PubMed Central

Kornmann, B., Osman, C., and Walter, P. (2011). The conserved GTPase Gem1 regulates endoplasmic reticulum-mitochondria connections. Proc. Natl. Acad. Sci. U. S. A. 108, 14151–14156.10.1073/pnas.1111314108Suche in Google Scholar PubMed PubMed Central

Koshiba, T., Detmer, S.A., Kaiser, J.T., Chen, H., McCaffery, J.M., and Chan, D.C. (2004). Structural basis of mitochondrial tethering by mitofusin complexes. Science 305, 858–862.10.1126/science.1099793Suche in Google Scholar PubMed

Koshiba, T., Holman, H.A., Kubara, K., Yasukawa, K., Kawabata, S.-I., Okamoto, K., MacFarlane, J., and Shaw, J.M. (2011). Structure-function analysis of the yeast mitochondrial Rho GTPase, Gem1p: implications for mitochondrial inheritance. J. Biol. Chem. 286, 354–362.10.1074/jbc.M110.180034Suche in Google Scholar PubMed PubMed Central

Kukat, C. and Larsson, N.-G. (2013). mtDNA makes a U-turn for the mitochondrial nucleoid. Trends Cell Biol. 23, 457–463.10.1016/j.tcb.2013.04.009Suche in Google Scholar PubMed

Kukat, C., Wurm, C.A., Spåhr, H., Falkenberg, M., Larsson, N.-G., and Jakobs, S. (2011). Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc. Natl. Acad. Sci. U. S. A. 108, 13534–13539.10.1073/pnas.1109263108Suche in Google Scholar PubMed PubMed Central

Labbé, K., Murley, A., and Nunnari, J. (2014). Determinants and functions of mitochondrial behavior. Annu. Rev. Cell Dev. Biol. 30, 357–391.10.1146/annurev-cellbio-101011-155756Suche in Google Scholar PubMed

Lackner, L.L., Ping, H., Graef, M., Murley, A., and Nunnari, J. (2013). Endoplasmic reticulum-associated mitochondria-cortex tether functions in the distribution and inheritance of mitochondria. Proc. Natl. Acad. Sci. 110, E458–E467.10.1073/pnas.1215232110Suche in Google Scholar PubMed PubMed Central

Lai, C.-Y., Jaruga, E., Borghouts, C., and Jazwinski, S.M. (2002). A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae. Genetics 162, 73–87.10.1093/genetics/162.1.73Suche in Google Scholar PubMed PubMed Central

Lewis, S.C., Uchiyama, L.F., and Nunnari, J. (2016). ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science 353, aaf5549.10.1126/science.aaf5549Suche in Google Scholar PubMed PubMed Central

Lieber, T., Jeedigunta, S.P., Palozzi, J.M., Lehmann, R., and Hurd, T.R. (2019). Mitochondrial fragmentation drives selective removal of deleterious mtDNA in the germline. Nature 570, 380–384.10.1038/s41586-019-1213-4Suche in Google Scholar PubMed PubMed Central

Longo, V.D., Shadel, G.S., Kaeberlein, M., and Kennedy, B. (2012). Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metab. 16, 18–31.10.1016/j.cmet.2012.06.002Suche in Google Scholar PubMed PubMed Central

Lynch, M., Sung, W., Morris, K., Coffey, N., Landry, C.R., Dopman, E.B., Dickinson, W.J., Okamoto, K., Kulkarni, S., Hartl, D.L., et al. (2008). A genome-wide view of the spectrum of spontaneous mutations in yeast. Proc. Natl. Acad. Sci. U. S. A. 105, 9272–9277.10.1073/pnas.0803466105Suche in Google Scholar PubMed PubMed Central

McFaline-Figueroa, J.R., Vevea, J., Swayne, T.C., Zhou, C., Liu, C., Leung, G., Boldogh, I.R., and Pon, L.A. (2011). Mitochondrial quality control during inheritance is associated with lifespan and mother-daughter age asymmetry in budding yeast. Aging Cell, 10, 885–895.10.1111/j.1474-9726.2011.00731.xSuche in Google Scholar PubMed PubMed Central

Mears, J.A., Lackner, L.L., Fang, S., Ingerman, E., Nunnari, J., and Hinshaw, J.E. (2011). Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat. Struct. Mol. Biol. 18, 20–26.10.1038/nsmb.1949Suche in Google Scholar PubMed PubMed Central

Meeusen, S. and Nunnari, J. (2003). Evidence for a two membrane-spanning autonomous mitochondrial DNA replisome. J. Cell Biol. 163, 503–510.10.1083/jcb.200304040Suche in Google Scholar

Mitra, K., Wunder, C., Roysam, B., Lin, G., and Lippincott-Schwartz, J. (2009). A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc. Natl. Acad. Sci. U. S. A. 106, 11960–11965.10.1073/pnas.0904875106Suche in Google Scholar

Murley, A., Lackner, L.L., Osman, C., West, M., Voeltz, G.K., Walter, P., and Nunnari, J. (2013). ER-associated mitochondrial division links the distribution of mitochondria and mitochondrial DNA in yeast. Elife 2, e00422.10.7554/eLife.00422Suche in Google Scholar

Murphy, M.P. (2009). How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13.10.1042/BJ20081386Suche in Google Scholar

Ngo, H.B., Kaiser, J.T., and Chan, D.C. (2011). The mitochondrial transcription and packaging factor Tfam imposes a U-turn on mitochondrial DNA. Nat. Struct. Mol. Biol. 18, 1290–1296.10.1038/nsmb.2159Suche in Google Scholar

Nunnari, J. and Suomalainen, A. (2012). Mitochondria: in sickness and in health. Cell 148, 1145–1159.10.1016/j.cell.2012.02.035Suche in Google Scholar

Nunnari, J., Marshall, W.F., Straight, A., Murray, A., Sedat, J.W., and Walter, P. (1997). Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol. Biol. Cell 8, 1233–1242.10.1091/mbc.8.7.1233Suche in Google Scholar

Ogbadoyi, E.O., Robinson, D.R., and Gull, K. (2003). A high-order trans-membrane structural linkage is responsible for mitochondrial genome positioning and segregation by flagellar basal bodies in trypanosomes. Mol. Biol. Cell 14, 1769–1779.10.1091/mbc.e02-08-0525Suche in Google Scholar

Okamoto, K., Perlman, P.S., and Butow, R.A. (1998). The sorting of mitochondrial DNA and mitochondrial proteins in zygotes: preferential transmission of mitochondrial DNA to the medial bud. J. Cell Biol. 142, 613–623.10.1083/jcb.142.3.613Suche in Google Scholar

Olichon, A., Emorine, L.J., Descoins, E., Pelloquin, L., Brichese, L., Gas, N., Guillou, E., Delettre, C., Valette, A., Hamel, C.P., et al. (2002). The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 523, 171–176.10.1016/S0014-5793(02)02985-XSuche in Google Scholar

Osman, C., Noriega, T.R., Okreglak, V., Fung, J.C., and Walter, P. (2015). Integrity of the yeast mitochondrial genome, but not its distribution and inheritance, relies on mitochondrial fission and fusion. Proc. Natl. Acad. Sci. U. S. A. 112, E947–E956.10.1073/pnas.1501737112Suche in Google Scholar

Otsuga, D., Keegan, B.R., Brisch, E., Thatcher, J.W., Hermann, G.J., Bleazard, W., and Shaw, J.M. (1998). The dynamin-related GTPase, Dnm1p, controls mitochondrial morphology in yeast. J. Cell Biol. 143, 333–349.10.1083/jcb.143.2.333Suche in Google Scholar

Peralta, S., Goffart, S., Williams, S.L., Diaz, F., Garcia, S., Nissanka, N., Area-Gomez, E., Pohjoismäki, J., and Moraes, C.T. (2018). ATAD3 controls mitochondrial cristae structure in mouse muscle, influencing mtDNA replication and cholesterol levels. J. Cell Sci. 131, jcs217075.10.1242/jcs.217075Suche in Google Scholar

Pernice, W.M., Vevea, J.D., and Pon, L.A. (2016). A role for Mfb1p in region-specific anchorage of high-functioning mitochondria and lifespan in Saccharomyces cerevisiae. Nat. Commun. 7, 10595.10.1038/ncomms10595Suche in Google Scholar

Pica-Mattoccia, L. and Attardi, G. (1972). Expression of the mitochondrial genome in HeLa cells. IX. Replication of mitochondrial DNA in relationship to cell cycle in HeLa cells. J. Mol. Biol. 64, 465–484.10.1016/0022-2836(72)90511-6Suche in Google Scholar

Rafelski, S.M., Viana, M.P., Zhang, Y., Chan, Y.-H.M., Thorn, K.S., Yam, P., Fung, J.C., Li, H., Costa, L.D.F., and Marshall, W.F. (2012). Mitochondrial network size scaling in budding yeast. Science 338, 822–824.10.1126/science.1225720Suche in Google Scholar PubMed PubMed Central

Richman, T.R., Spahr, H., Ermer, J.A., Davies, S.M., Viola, H.M., Bates, K.A., Papadimitriou, J., Hool, L.C., Rodger, J., Larsson, N.G., et al. (2016). Loss of the RNA-binding protein TACO1 causes late-onset mitochondrial dysfunction in mice. Nat. Commun. 7, 11884.10.1038/ncomms11884Suche in Google Scholar PubMed PubMed Central

Richter-Dennerlein, R., Oeljeklaus, S., Lorenzi, I., Ronsör, C., Bareth, B., Schendzielorz, A.B., Wang, C., Warscheid, B., Rehling, P., and Dennerlein, S. (2016). Mitochondrial protein synthesis adapts to influx of nuclear-encoded protein. Cell 167, 471–483.e10.10.1016/j.cell.2016.09.003Suche in Google Scholar PubMed PubMed Central

Robinson, D.R. and Gull, K. (1991). Basal body movements as a mechanism for mitochondrial genome segregation in the trypanosome cell cycle. Nature 352, 731–733.10.1038/352731a0Suche in Google Scholar PubMed

Sasaki, T., Sato, Y., Higashiyama, T., and Sasaki, N. (2017). Live imaging reveals the dynamics and regulation of mitochondrial nucleoids during the cell cycle in Fucci2-HeLa cells. Sci. Rep. 7, 11257.10.1038/s41598-017-10843-8Suche in Google Scholar PubMed PubMed Central

Schneider, A. and Ochsenreiter, T. (2018). Failure is not an option – mitochondrial genome segregation in trypanosomes. J. Cell Sci. 131, jcs221820.10.1242/jcs.221820Suche in Google Scholar

Shi, Y., Dierckx, A., Wanrooij, P.H., Wanrooij, S., Larsson, N.-G., Wilhelmsson, L.M., Falkenberg, M., and Gustafsson, C.M. (2012). Mammalian transcription factor A is a core component of the mitochondrial transcription machinery. Proc. Natl. Acad. Sci. 109, 16510–16515.10.1073/pnas.1119738109Suche in Google Scholar

Swayne, T.C., Zhou, C., Boldogh, I.R., Charalel, J.K., McFaline-Figueroa, J.R., Thoms, S., Yang, C., Leung, G., McInnes, J., Erdmann, R., et al. (2011). Role for cER and Mmr1p in anchorage of mitochondria at sites of polarized surface growth in budding yeast. Curr. Biol. 21, 1994–1999.10.1016/j.cub.2011.10.019Suche in Google Scholar

Taguchi, N., Ishihara, N., Jofuku, A., Oka, T., and Mihara, K. (2007). Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 282, 11521–11529.10.1074/jbc.M607279200Suche in Google Scholar

Veatch, J.R., McMurray, M.A., Nelson, Z.W., and Gottschling, D.E. (2009). Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 137, 1247–1258.10.1016/j.cell.2009.04.014Suche in Google Scholar

Wai, T., Teoli, D., and Shoubridge, E.A. (2008). The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat. Genet. 40, 1484–1488.10.1038/ng.258Suche in Google Scholar

Wang, C., Du, W., Su, Q.P., Zhu, M., Feng, P., Li, Y., Zhou, Y., Mi, N., Zhu, Y., Jiang, D., et al. (2015). Dynamic tubulation of mitochondria drives mitochondrial network formation. Cell Res. 25, 1108–1120.10.1038/cr.2015.89Suche in Google Scholar

Weraarpachai, W., Antonicka, H., Sasarman, F., Seeger, J., Schrank, B., Kolesar, J.E., Lochmüller, H., Chevrette, M., Kaufman, B.A., Horvath, R. (2009). Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome. Nat. Genet. 41, 833–837.10.1038/ng.390Suche in Google Scholar

Wiedemann, N. and Pfanner, N. (2017). Mitochondrial machineries for protein import and assembly. Annu. Rev. Biochem. 86, 685–714.10.1146/annurev-biochem-060815-014352Suche in Google Scholar

Williamson, D. and Moustacchi, E. (1971). The synthesis of mitochondrial DNA during the cell cycle in the yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 42, 195–201.10.1016/0006-291X(71)90087-8Suche in Google Scholar

Wong, E.D., Wagner, J.A., Gorsich, S.W., McCaffery, J.M., Shaw, J.M., and Nunnari, J. (2000). The dynamin-related GTPase, Mgm1p, is an intermembrane space protein required for maintenance of fusion competent mitochondria. J. Cell Biol. 151, 341–352.10.1083/jcb.151.2.341Suche in Google Scholar PubMed PubMed Central

Wu, M.-J., Chen, Y.-S., Kim, M.R., Chang, C.-C., Gampala, S., Zhang, Y., Wang, Y., Chang, C.-Y., Yang, J.-Y., and Chang, C.-J. (2019). Epithelial-mesenchymal transition directs stem cell polarity via regulation of mitofusin. Cell Metab. 29, 993–1002.e6.10.1016/j.cmet.2018.11.004Suche in Google Scholar PubMed

Youle, R.J. (2019). Mitochondria-striking a balance between host and endosymbiont. Science 365, eaaw9855.10.1126/science.aaw9855Suche in Google Scholar PubMed

Zhao, Y., Sun, X., Hu, D., Prosdocimo, D.A., Hoppel, C., Jain, M.K., Ramachandran, R., and Qi, X. (2019). ATAD3A oligomerization causes neurodegeneration by coupling mitochondrial fragmentation and bioenergetics defects. Nat. Commun. 10, 1371.10.1038/s41467-019-09291-xSuche in Google Scholar PubMed PubMed Central

Received: 2019-08-06
Accepted: 2019-11-08
Published Online: 2019-12-09
Published in Print: 2020-04-28

©2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2019-0337/html
Button zum nach oben scrollen