Home Mg2+ homeostasis and transport in cyanobacteria – at the crossroads of bacterial and chloroplast Mg2+ import
Article
Licensed
Unlicensed Requires Authentication

Mg2+ homeostasis and transport in cyanobacteria – at the crossroads of bacterial and chloroplast Mg2+ import

  • Anne-Christin Pohland and Dirk Schneider EMAIL logo
Published/Copyright: March 26, 2019

Abstract

Magnesium cation (Mg2+) is the most abundant divalent cation in living cells, where it is required for various intracellular functions. In chloroplasts and cyanobacteria, established photosynthetic model systems, Mg2+ is the central ion in chlorophylls, and Mg2+ flux across the thylakoid membrane is required for counterbalancing the light-induced generation of a ΔpH across the thylakoid membrane. Yet, not much is known about Mg2+ homoeostasis, transport and distribution within cyanobacteria. However, Mg2+ transport across membranes has been studied in non-photosynthetic bacteria, and first observations and findings are reported for chloroplasts. Cyanobacterial cytoplasmic membranes appear to contain the well-characterized Mg2+ channels CorA and/or MgtE, which both facilitate transmembrane Mg2+ flux down the electrochemical gradient. Both Mg2+ channels are typical for non-photosynthetic bacteria. Furthermore, Mg2+ transporters of the MgtA/B family are also present in the cytoplasmic membrane to mediate active Mg2+ import into the bacterial cell. While the cytoplasmic membrane of cyanobacteria resembles a ‘classical’ bacterial membrane, essentially nothing is known about Mg2+ channels and/or transporters in thylakoid membranes of cyanobacteria or chloroplasts. As discussed here, at least one Mg2+ channelling protein must be localized within thylakoid membranes. Thus, either one of the ‘typical’ bacterial Mg2+ channels has a dual localization in the cytoplasmic plus the thylakoid membrane, or another, yet unidentified channel is present in cyanobacterial thylakoid membranes.

Acknowledgments

We thank Hildegard Pearson and Benedikt Junglas for discussions and carefully reading the manuscript.

References

Alteri, C.J., Lindner, J.R., Reiss, D.J., Smith, S.N., and Mobley, H.L.T. (2011). The broadly conserved regulator PhoP links pathogen virulence and membrane potential in Escherichia coli. Mol. Microbiol. 82, 145–163.10.1111/j.1365-2958.2011.07804.xSearch in Google Scholar

Anastassopoulou, J. (2003). Metal-DNA interactions. J. Mol. Struct. 651653, 19–26.10.1016/S0022-2860(02)00625-7Search in Google Scholar

Armbruster, U., Carrillo, L.R., Venema, K., Pavlovic, L., Schmidtmann, E., Kornfeld, A., Jahns, P., Berry, J.A., Kramer, D.M., and Jonikas, M.C. (2014). Ion antiport accelerates photosynthetic acclimation in fluctuating light environments. Nat. Commun. 5, 5439.10.1038/ncomms6439Search in Google Scholar

Armbruster, U., Correa Galvis, V., Kunz, H.-H., and Strand, D.D. (2017). The regulation of the chloroplast proton motive force plays a key role for photosynthesis in fluctuating light. Curr. Opin. Plant Biol. 37, 56–62.10.1016/j.pbi.2017.03.012Search in Google Scholar

Barber, J. (1980). Membrane surface charges and potentials in relation to photosynthesis. Biochim. Biophys. Acta Rev. Bioenerg. 594, 253–308.10.1016/0304-4173(80)90003-8Search in Google Scholar

Barber, J., Mills, J., and Nicolson, J. (1974). Studies with cation specific ionophores show that within the intact chloroplast Mg++ acts as the main exchange cation for H+ pumping. FEBS Lett. 49, 106–110.10.1016/0014-5793(74)80643-5Search in Google Scholar

Battchikova, N., Eisenhut, M., and Aro, E.-M. (2011). Cyanobacterial NDH-1 complexes: novel insights and remaining puzzles. Biochim. Biophys. Acta Bioenerg. 1807, 935–944.10.1016/j.bbabio.2010.10.017Search in Google Scholar PubMed

Belkin, S., Mehlhorn, R.J., and Packer, L. (1987). Proton gradients in intact cyanobacteria. Plant Physiol. 84, 25–30.10.1104/pp.84.1.25Search in Google Scholar PubMed PubMed Central

Black, J.R., Yin, Q., and Casey, W.H. (2006). An experimental study of magnesium-isotope fractionation in chlorophyll-a photosynthesis. Geochim. Cosmochim. Acta 70, 4072–4079.10.1016/j.gca.2006.06.010Search in Google Scholar

Brock, T.D. (1962). Effects of magnesium ion deficiency on Escherichia coli and possible relation to the mode of action of novobiocin. J. Bacteriol. 84, 679–682.10.1128/jb.84.4.679-682.1962Search in Google Scholar PubMed PubMed Central

Carraretto, L., Formentin, E., Teardo, E., Checchetto, V., Tomizioli, M., Morosinotto, T., Giacometti, G.M., Finazzi, G., and Szabó, I. (2013). A thylakoid-located two-pore K+ channel controls photosynthetic light utilization in plants. Science 342, 114–118.10.1126/science.1242113Search in Google Scholar

Carraretto, L., Teardo, E., Checchetto, V., Finazzi, G., Uozumi, N., and Szabo, I. (2016). Ion channels in plant bioenergetic organelles, chloroplasts and mitochondria: from molecular identification to function. Mol. Plant. 9, 371–395.10.1016/j.molp.2015.12.004Search in Google Scholar

Checchetto, V., Segalla, A., Allorent, G., La Rocca, N., Leanza, L., Giacometti, G.M., Uozumi, N., Finazzi, G., Bergantino, E., and Szabo, I. (2012). Thylakoid potassium channel is required for efficient photosynthesis in cyanobacteria. Proc. Natl. Acad. Sci. USA 109, 11043–11048.10.1073/pnas.1205960109Search in Google Scholar

Chen, Z.C., Yamaji, N., Horie, T., Che, J., Li, J., An, G., and Ma, J.F. (2017). A magnesium transporter OsMGT1 plays a critical role in salt tolerance in rice. Plant Physiol. 174, 1837–1849.10.1104/pp.17.00532Search in Google Scholar

Clarke, F.W. (1924). The data of geochemistry, 5th ed. Bulletin. Vol. 770, (Washington, D.C., USA: U.S. Government Printing Office).Search in Google Scholar

Cromie, M.J., Shi, Y., Latifi, T., and Groisman, E.A. (2006). An RNA sensor for intracellular Mg2+. Cell 125, 71–84.10.1016/j.cell.2006.01.043Search in Google Scholar

Dann, C.E., Wakeman, C.A., Sieling, C.L., Baker, S.C., Irnov, I., and Winkler, W.C. (2007). Structure and mechanism of a metal-sensing regulatory RNA. Cell 130, 878–892.10.1016/j.cell.2007.06.051Search in Google Scholar

De Clerck, O., Bogaert, K.A., and Leliaert, F. (2012). Diversity and evolution of algae: Primary endosymbiosis. In: Advances in Botanical Research, Vol. 64, G. Piganeau, ed. (London, UK: Academic Press), pp. 55–86.10.1016/B978-0-12-391499-6.00002-5Search in Google Scholar

Dilley, R.A. and Vernon, L.P. (1965). Ion and water transport processes related to the light-dependent shrinkage of spinach chloroplasts. Arch. Biochem. Biophys. 111, 365–375.10.1016/0003-9861(65)90198-0Search in Google Scholar

Dorne, A.J., Joyard, J., and Douce, R. (1990). Do thylakoids really contain phosphatidylcholine? Proc. Natl. Acad. Sci. USA 87, 71–74.10.1073/pnas.87.1.71Search in Google Scholar PubMed PubMed Central

Drummond, R.S.M., Tutone, A., Li, Y.-C., and Gardner, R.C. (2006). A putative magnesium transporter AtMRS2-11 is localized to the plant chloroplast envelope membrane system. Plant Sci. 170, 78–89.10.1016/j.plantsci.2005.08.018Search in Google Scholar

Elin, R.J. (1987). Assessment of magnesium status. Clin. Chem. 33, 1965–1970.10.1093/clinchem/33.11.1965Search in Google Scholar

Eshaghi, S., Niegowski, D., Kohl, A., Martinez Molina, D., Lesley, S.A., and Nordlund, P. (2006). Crystal structure of a divalent metal ion transporter CorA at 2.9 Å resolution. Science 313, 354–357.10.1126/science.1127121Search in Google Scholar

Fagerbakke, K.M., Norland, S., and Heldal, M. (1999). The inorganic ion content of native aquatic bacteria. Can. J. Microbiol. 45, 304–311.10.1139/w99-013Search in Google Scholar

Fang, Z., Mi, F., and Berkowitz, G.A. (1995). Molecular and physiological analysis of a thylakoid K+ channel protein. Plant Physiol. 108, 1725–1734.10.1104/pp.108.4.1725Search in Google Scholar

Flatman, P.W. (1984). Magnesium transport across cell membranes. J. Membr. Biol. 80, 1–14.10.1007/BF01868686Search in Google Scholar

Foster, A.W., Osman, D., and Robinson, N.J. (2014). Metal preferences and metallation. J. Biol. Chem. 289, 28095–28103.10.1074/jbc.R114.588145Search in Google Scholar

Gmeiner, J. and Schlecht, S. (1980). Molecular composition of the outer membrane of Escherichia coli and the importance of protein-lipopolysaccharide interactions. Arch. Microbiol. 127, 81–86.10.1007/BF00428010Search in Google Scholar

Gray, M.W. (1989). The evolutionary origins of organelles. Trends Genet. 5, 294–299.10.1016/0168-9525(89)90111-XSearch in Google Scholar

Groisman, E.A., Kayser, J., and Soncini, F.C. (1997). Regulation of polymyxin resistance and adaptation to low-Mg2+ environments. J. Bacteriol. 179, 7040–7045.10.1128/jb.179.22.7040-7045.1997Search in Google Scholar PubMed PubMed Central

Groisman, E.A., Hollands, K., Kriner, M.A., Lee, E.-J., Park, S.-Y., and Pontes, M.H. (2013). Bacterial Mg2+ homeostasis, transport, and virulence. Annu. Rev. Genet. 47, 625–646.10.1146/annurev-genet-051313-051025Search in Google Scholar PubMed PubMed Central

Gunzel, D., Kucharski, L.M., Kehres, D.G., Romero, M.F., and Maguire, M.E. (2006). The MgtC virulence factor of Salmonella enterica serovar Typhimurium activates Na+,K+-ATPase. J. Bacteriol. 188, 5586–5594.10.1128/JB.00296-06Search in Google Scholar PubMed PubMed Central

Häder, D.-P., Williamson, C.E., Wängberg, S.-Å., Rautio, M., Rose, K.C., Gao, K., Helbling, E.W., Sinha, R.P., and Worrest, R. (2015). Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochem. Photobiol. Sci. 14, 108–126.10.1039/C4PP90035ASearch in Google Scholar

Hahn, A. and Schleiff, E. (2014). The cell envelope. In: The Cell Biology of Cyanobacteria, F. Enrique and H. Antonia, eds. (Norfolk, UK: Caister Academic Press), pp. 29–87.Search in Google Scholar

Hancock, R.E.W. (1984). Alterations in outer membrane permeability. Annu. Rev. Microbiol. 38, 237–264.10.1146/annurev.mi.38.100184.001321Search in Google Scholar

Hattori, M., Tanaka, Y., Fukai, S., Ishitani, R., and Nureki, O. (2007). Crystal structure of the MgtE Mg2+ transporter. Nature 448, 1072–1075.10.1038/nature06093Search in Google Scholar

Hattori, M., Iwase, N., Furuya, N., Tanaka, Y., Tsukazaki, T., Ishitani, R., Maguire, M.E., Ito, K., Maturana, A., and Nureki, O. (2009). Mg2+-dependent gating of bacterial MgtE channel underlies Mg2+ homeostasis. EMBO J. 28, 3602–3612.10.1038/emboj.2009.288Search in Google Scholar

Heidrich, J., Junglas, B., Grytsyk, N., Hellmann, N., Rusitzka, K., Gebauer, W., Markl, J., Hellwig, P., and Schneider, D. (2018). Mg2+ binding triggers rearrangement of the IM30 ring structure, resulting in augmented exposure of hydrophobic surfaces competent for membrane binding. J. Biol. Chem. 293, 8230–8241.10.1074/jbc.RA117.000991Search in Google Scholar

Hennig, R., Heidrich, J., Saur, M., Schmüser, L., Roeters, S.J., Hellmann, N., Woutersen, S., Bonn, M., Weidner, T., Markl, J., et al. (2015). IM30 triggers membrane fusion in cyanobacteria and chloroplasts. Nat. Commun. 6, 7018.10.1038/ncomms8018Search in Google Scholar

Hermans, C., Conn, S.J., Chen, J., Xiao, Q., and Verbruggen, N. (2013). An update on magnesium homeostasis mechanisms in plants. Metallomics 5, 1170.10.1039/c3mt20223bSearch in Google Scholar

Hertig, C. and Wolosiuk, R.A. (1980). A dual effect of Ca2+ on chloroplast fructose-1,6-bisphosphatase. Biochem. Biophys. Res. Commun. 97, 325–333.10.1016/S0006-291X(80)80171-9Search in Google Scholar

Hmiel, S.P., Snavely, M.D., Miller, C.G., and Maguire, M.E. (1986). Magnesium transport in Salmonella typhimurium: characterization of magnesium influx and cloning of a transport gene. J. Bacteriol. 168, 1444–1450.10.1128/jb.168.3.1444-1450.1986Search in Google Scholar PubMed PubMed Central

Irving, H. and Williams, R.J.P. (1948). Order of stability of metal complexes. Nature 162, 746–747.10.1038/162746a0Search in Google Scholar

Ishijima, S., Uchibori, A., Takagi, H., Maki, R., and Ohnishi, M. (2003). Light-induced increase in free Mg2+ concentration in spinach chloroplasts: measurement of free Mg2+ by using a fluorescent probe and necessity of stromal alkalinization. Arch. Biochem. Biophys. 412, 126–132.10.1016/S0003-9861(03)00038-9Search in Google Scholar

Izawa, S. and Good, N.E. (1966). Effect of salts and electron transport on the conformation of isolated chloroplasts. I. Light-scattering and volume changes. Plant Physiol. 41, 533–543.10.1104/pp.41.3.533Search in Google Scholar PubMed PubMed Central

Cruz, J.A., Sacksteder, C.A., Kanazawa, A., Kramer, D.M., Cruz, J.A., Sacksteder, C.A., Kanazawa, A., and Kramer, D.M. (2001). Contribution of electric field (Δψ) to steady-state transthylakoid proton motive force (pmf) in vitro and in vivo. Control of pmf parsing into Δψ and ΔpH by ionic strength. Biochemistry 40, 1226–1237.10.1021/bi0018741Search in Google Scholar PubMed

Kaňa, R. and Govindjee. (2016). Role of ions in the regulation of light-harvesting. Front. Plant Sci. 7, 1849.10.3389/fpls.2016.01849Search in Google Scholar PubMed PubMed Central

Kaneko, T., Sato, S., Kotani, H., Tanaka, A., Asamizu, E., Nakamura, Y., Miyajima, N., Hirosawa, M., Sugiura, M., Sasamoto, S., et al. (1996). Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 3, 109–136.10.1093/dnares/3.3.109Search in Google Scholar PubMed

Kehres, D.G. and Maguire, M.E. (2002). Structure, properties and regulation of magnesium transport proteins. BioMetals 15, 261–270.10.1023/A:1016078832697Search in Google Scholar

Keren, N. (2004). Critical roles of bacterioferritins in iron storage and proliferation of cyanobacteria. Plant Physiol. 135, 1666–1673.10.1104/pp.104.042770Search in Google Scholar PubMed PubMed Central

Kimura, T., Lorenz-Fonfria, V.A., Douki, S., Motoki, H., Ishitani, R., Nureki, O., Higashi, M., and Furutani, Y. (2018). Vibrational and molecular properties of Mg2+ binding and ion selectivity in the magnesium channel MgtE. J. Phys. Chem. B. 122, 9681–9696.10.1021/acs.jpcb.8b07967Search in Google Scholar PubMed

Kirchhoff, H., Borinski, M., Lenhert, S., Chi, L., and Büchel, C. (2004). Transversal and lateral exciton energy transfer in grana thylakoids of spinach. Biochemistry 43, 14508–14516.10.1021/bi048473wSearch in Google Scholar PubMed

Knoop, V., Groth-Malonek, M., Gebert, M., Eifler, K., and Weyand, K. (2005). Transport of magnesium and other divalent cations: evolution of the 2-TM-GxN proteins in the MIT superfamily. Mol. Genet. Genomics 274, 205–216.10.1007/s00438-005-0011-xSearch in Google Scholar PubMed

Kobayashi, N.I. and Tanoi, K. (2015). Critical issues in the study of magnesium transport systems and magnesium deficiency symptoms in plants. Int. J. Mol. Sci. 16, 23076–23093.10.3390/ijms160923076Search in Google Scholar

Krause, G.H. (1977). Light-induced movement of magnesium ions in intact chloroplasts. Spectroscopic determination with Eriochrome Blue SE. Biochim. Biophys. Acta Bioenerg. 460, 500–510.10.1016/0005-2728(77)90088-3Search in Google Scholar

Kung, F.C., Raymond, J., and Glaser, D.A. (1976). Metal ion content of Escherichia coli versus cell age. J. Bacteriol. 126, 1089–1095.10.1128/jb.126.3.1089-1095.1976Search in Google Scholar

Li, H., Du, H., Huang, K., Chen, X., Liu, T., Gao, S., Liu, H., Tang, Q., Rong, T., and Zhang, S. (2016a). Identification, and functional and expression analyses of the CorA/MRS2/MGT-type magnesium transporter family in maize. Plant Cell Physiol. 57, 1153–1168.10.1093/pcp/pcw064Search in Google Scholar

Li, T., Zhang, Y., Shi, M., Pei, G., Chen, L., and Zhang, W. (2016b). A putative magnesium transporter Slr1216 involved in sodium tolerance in cyanobacterium Synechocystis sp. PCC 6803. Algal Res. 17, 202–210.10.1016/j.algal.2016.05.003Search in Google Scholar

Liberton, M., Howard Berg, R., Heuser, J., Roth, R., and Pakrasi, H.B. (2006). Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Protoplasma 227, 129–138.10.1007/s00709-006-0145-7Search in Google Scholar

Liberton, M., Saha, R., Jacobs, J.M., Nguyen, A.Y., Gritsenko, M.A., Smith, R.D., Koppenaal, D.W., and Pakrasi, H.B. (2016). Global proteomic analysis reveals an exclusive role of thylakoid membranes in bioenergetics of a model cyanobacterium. Mol. Cell. Proteomics. 15, 2021–2032.10.1074/mcp.M115.057240Search in Google Scholar

Liu, L.-N. (2016). Distribution and dynamics of electron transport complexes in cyanobacterial thylakoid membranes. Biochim. Biophys. Acta Bioenerget. 1857, 256–265.10.1016/j.bbabio.2015.11.010Search in Google Scholar

Lunin, V.V., Dobrovetsky, E., Khutoreskaya, G., Zhang, R., Joachimiak, A., Doyle, D.A., Bochkarev, A., Maguire, M.E., Edwards, A.M., and Koth, C.M. (2006). Crystal structure of the CorA Mg2+ transporter. Nature 440, 833–837.10.1038/nature04642Search in Google Scholar

Lusk, J.E., Williams, R.J., and Kennedy, E.P. (1968). Magnesium and the growth of Escherichia coli. J. Biol. Chem. 243, 2618–2624.10.1016/S0021-9258(18)93417-4Search in Google Scholar

Lyu, H. and Lazár, D. (2017). Modeling the light-induced electric potential difference ΔΨ across the thylakoid membrane based on the transition state rate theory. Biochim. Biophys. Acta Bioenerget. 1858, 239–248.10.1016/j.bbabio.2016.12.009Search in Google Scholar PubMed

Maguire, M.E. (1992). MgtA and MgtB: Prokaryotic P-type ATPases that mediate Mg2+ influx. J. Bioenerg. Biomembr. 24, 319–328.10.1007/BF00768852Search in Google Scholar

Maguire, M.E. (2006). Magnesium transporters: properties, regulation and structure. Front. Biosci. 11, 3149–3163.10.2741/2039Search in Google Scholar PubMed

Maguire, M.E. and Cowan, J.A. (2002). Magnesium chemistry and biochemistry. Biometals 15, 203–210.10.1023/A:1016058229972Search in Google Scholar

Maruyama, T., Imai, S., Kusakizako, T., Hattori, M., Ishitani, R., Nureki, O., Ito, K., Maturana, A.D., Shimada, I., and Osawa, M. (2018). Functional roles of Mg2+ binding sites in ion-dependent gating of a Mg2+ channel, MgtE, revealed by solution NMR. eLife 7, 1–16.10.7554/eLife.31596.021Search in Google Scholar

Matthies, D., Dalmas, O., Borgnia, M.J., Dominik, P.K., Merk, A., Rao, P., Reddy, B.G., Islam, S., Bartesaghi, A., Perozo, E., et al. (2016). Cryo-EM structures of the magnesium channel CorA reveal symmetry break upon gating. Cell 164, 747–756.10.1016/j.cell.2015.12.055Search in Google Scholar PubMed PubMed Central

McFadden, G.I. (2001). Primary and secondary endosymbiosis and the origin of plastids. J. Phycol. 37, 951–959.10.1046/j.1529-8817.2001.01126.xSearch in Google Scholar

Moncany, M.L.J. and Kellenberger, E. (1981). High magnesium content of Escherichia coli B. Experientia 37, 846–847.10.1007/BF01985672Search in Google Scholar PubMed

Moncrief, M.B.C. and Maguire, M.E. (1998). Magnesium and the role of mgtC in growth of Salmonella typhimurium. Infect. Immun. 66, 3802–3809.10.1128/IAI.66.8.3802-3809.1998Search in Google Scholar PubMed PubMed Central

Monsieurs, P., De Keersmaecker, S., Navarre, W.W., Bader, M.W., De Smet, F., McClelland, M., Fang, F.C., De Moor, B., Vanderleyden, J., and Marchal, K. (2005). Comparison of the PhoPQ regulon in Escherichia coli and Salmonella typhimurium. J. Mol. Evol. 60, 462–474.10.1007/s00239-004-0212-7Search in Google Scholar PubMed

Moomaw, A.S. and Maguire, M.E. (2008). The unique nature of Mg2+ channels. Physiology 23, 275–285.10.1152/physiol.00019.2008Search in Google Scholar PubMed PubMed Central

Moomaw, A.S. and Maguire, M.E. (2010). Cation selectivity by the CorA Mg2+ channel requires a fully hydrated cation. Biochemistry 49, 5998–6008.10.1021/bi1005656Search in Google Scholar PubMed PubMed Central

Mullineaux, C.W. (2014). Co-existence of photosynthetic and respiratory activities in cyanobacterial thylakoid membranes. Biochim. Biophys. Acta Bioenerget. 1837, 503–511.10.1016/j.bbabio.2013.11.017Search in Google Scholar

Mulo, P., Sicora, C., and Aro, E.-M. (2009). Cyanobacterial psbA gene family: optimization of oxygenic photosynthesis. Cell. Mol. Life Sci. 66, 3697–3710.10.1007/s00018-009-0103-6Search in Google Scholar

Nakao, M., Okamoto, S., Kohara, M., Fujishiro, T., Fujisawa, T., Sato, S., Tabata, S., Kaneko, T., and Nakamura, Y. (2010). CyanoBase: the cyanobacteria genome database update 2010. Nucleic Acids Res. 38 (Database issue), D379–81.10.1093/nar/gkp915Search in Google Scholar

Nelson, D.L. and Kennedy, E.P. (1971). Magnesium transport in Escherichia coli. Inhibition by cobaltous ion. J. Biol. Chem. 246, 3042–3049.10.1016/S0021-9258(18)62288-4Search in Google Scholar

Nickelsen, J. and Rengstl, B. (2013). Photosystem II assembly: from cyanobacteria to plants. Annu. Rev. Plant Biol. 64, 609–635.10.1146/annurev-arplant-050312-120124Search in Google Scholar PubMed

Nierhaus, K.H. (2014). Mg2+, K+, and the ribosome. J. Bacteriol. 196, 3817–3819.10.1128/JB.02297-14Search in Google Scholar PubMed PubMed Central

Nobel, P.S. (2009). Photochemistry of Photosynthesis. In: Physicochemical and Environmental Plant Physiology. (Amsterdam, NL: Academic Press (Elsevier)), pp. 228–275.10.1016/B978-0-12-374143-1.00005-3Search in Google Scholar

Nordin, N., Guskov, A., Phua, T., Sahaf, N., Xia, Y., Lu, S., Eshaghi, H., and Eshaghi, S. (2013). Exploring the structure and function of Thermotoga maritima CorA reveals the mechanism of gating and ion selectivity in Co2+/Mg2+ transport. Biochem. J. 451, 365–374.10.1042/BJ20121745Search in Google Scholar PubMed PubMed Central

Pakrasi, H., Ogawa, T., and Bhattacharrya-Pakrasi, M. (2001). Transport of metals: a key process in oxygenic photosynthesis. In: Regulation of Photosynthesis, Vol. 11, E.-M. Aro and B. Andersson, eds. (Dordrecht, NL: Kluwer Academic Publishers), pp. 253–264.10.1007/0-306-48148-0_14Search in Google Scholar

Pallen, M.J. and Gophna, U. (2007). Bacterial flagella and type III secretion: case studies in the evolution of complexity. In: Gene and Protein Evolution, Vol. 3. (Basel: Karger), pp. 30–47.10.1159/000107602Search in Google Scholar PubMed

Payandeh, J. and Pai, E.F. (2006). A structural basis for Mg2+ homeostasis and the CorA translocation cycle. EMBO J. 25, 3762–3773.10.1038/sj.emboj.7601269Search in Google Scholar

Payandeh, J., Pfoh, R., and Pai, E.F. (2013). The structure and regulation of magnesium selective ion channels. Biochim. Biophys. Acta Biomembr. 1828, 2778–2792.10.1016/j.bbamem.2013.08.002Search in Google Scholar

Peschek, G.A., Czerny, T., Schmetterer, G., and Nitschmann, W.H. (1985). Transmembrane proton electrochemical gradients in dark aerobic and anaerobic cells of the cyanobacterium (blue-green alga) Anacystis nidulans: evidence for respiratory energy transduction in the plasma membrane. Plant Physiol. 79, 278–284.10.1104/pp.79.1.278Search in Google Scholar

Pfeil, B.E., Schoefs, B., and Spetea, C. (2014). Function and evolution of channels and transporters in photosynthetic membranes. Cell. Mol. Life Sci. 71, 979–998.10.1007/s00018-013-1412-3Search in Google Scholar

Pfoh, R., Li, A., Chakrabarti, N., Payandeh, J., Pomes, R., and Pai, E.F. (2012). Structural asymmetry in the magnesium channel CorA points to sequential allosteric regulation. Proc. Natl. Acad. Sci. 109, 18809–18814.10.1073/pnas.1209018109Search in Google Scholar

Pisareva, T., Kwon, J., Oh, J., Kim, S., Ge, C., Wieslander, Å., Choi, J.-S., and Norling, B. (2011). Model for membrane organization and protein sorting in the cyanobacterium Synechocystis sp. PCC 6803 inferred from proteomics and multivariate sequence analyses. J. Proteome Res. 10, 3617–3631.10.1021/pr200268rSearch in Google Scholar

Portis, A.R. (1992). Regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase activity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 415–437.10.1146/annurev.pp.43.060192.002215Search in Google Scholar

Portis, A.R. and Heldt, H.W. (1976). Light-dependent changes of the Mg2+ concentration in the stroma in relation to the Mg2+ dependency of CO2 fixation in intact chloroplasts. Biochim. Biophys. Acta Bioenerget. 449, 434–446.10.1016/0005-2728(76)90154-7Search in Google Scholar

Portis, A.R., Chon, C.J., Mosbach, A., and Heldt, H.W. (1977). Fructose- and sedoheptulosebisphosphatase. The sites of a possible control of CO2 fixation by light-dependent changes of the stromal Mg2+ concentration. Biochim. Biophys. Acta Bioenerget. 461, 313–325.10.1016/0005-2728(77)90181-5Search in Google Scholar

Pottosin, I. and Dobrovinskaya, O. (2015). Ion channels in native chloroplast membranes: challenges and potential for direct patch-clamp studies. Front. Physiol. 6, 1–13.10.3389/fphys.2015.00396Search in Google Scholar PubMed PubMed Central

Pottosin, I.I. and Schönknecht, G. (1996). Ion channel permeable for divalent and monovalent cations in native spinach thylakoid membranes. J. Membr. Biol. 152, 223–233.10.1007/s002329900100Search in Google Scholar PubMed

Pottosin, I.I., Muñiz, J., and Shabala, S. (2005). Fast-activating channel controls cation fluxes across the native chloroplast envelope. J. Membr. Biol. 204, 145–156.10.1007/s00232-005-0758-3Search in Google Scholar PubMed

Puthiyaveetil, S., van Oort, B., and Kirchhoff, H. (2017). Surface charge dynamics in photosynthetic membranes and the structural consequences. Nat. Plants 3, 17020.10.1038/nplants.2017.20Search in Google Scholar PubMed

Qiao, J., Huang, S., Te, R., Wang, J., Chen, L., and Zhang, W. (2013). Integrated proteomic and transcriptomic analysis reveals novel genes and regulatory mechanisms involved in salt stress responses in Synechocystis sp. PCC 6803. Appl. Microbiol. Biotechnol. 97, 8253–8264.10.1007/s00253-013-5139-8Search in Google Scholar PubMed

Rang, C., Alix, E., Felix, C., Heitz, A., Tasse, L., and Blanc-Potard, A.-B. (2007). Dual role of the MgtC virulence factor in host and non-host environments. Mol. Microbiol. 63, 605–622.10.1111/j.1365-2958.2006.05542.xSearch in Google Scholar PubMed

Rippka, R., Waterbury, J., and Cohen-Bazire, G. (1974). A cyanobacterium which lacks thylakoids. Arch. Microbiol. 100, 419–436.10.1007/BF00446333Search in Google Scholar

Sakurai, I., Shen, J.-R., Leng, J., Ohashi, S., Kobayashi, M., and Wada, H. (2006). Lipids in oxygen-evolving photosystem II complexes of cyanobacteria and higher plants. J. Biochem. 140, 201–209.10.1093/jb/mvj141Search in Google Scholar PubMed

Schneider, D. (2014). Protein targeting, transport and translocation in cyanobacteria. In: The Cell Biology of Cyanobacteria, F. Enrique and H. Antonia, eds. (Norfolk, UK: Caister Academic Press), pp. 121–148.Search in Google Scholar

Schneider, D., Skrzypczak, S., Anemüller, S., Schmidt, C.L., Seidler, A., and Rögner, M. (2002). Heterogeneous Rieske proteins in the cytochrome b6f complex of Synechocystis PCC6803? J. Biol. Chem. 277, 10949–10954.10.1074/jbc.M104076200Search in Google Scholar PubMed

Schneider, D., Berry, S., Volkmer, T., Seidler, A., and Rögner, M. (2004). PetC1 is the major Rieske iron-sulfur protein in the cytochrome b6f complex of Synechocystis sp. PCC 6803. J. Biol. Chem. 279, 39383–39388.10.1074/jbc.M406288200Search in Google Scholar

Schneider, D., Fuhrmann, E., Scholz, I., Hess, W.R., and Graumann, P.L. (2007). Fluorescence staining of live cyanobacterial cells suggest non-stringent chromosome segregation and absence of a connection between cytoplasmic and thylakoid membranes. BMC Cell Biol. 8, 39.10.1186/1471-2121-8-39Search in Google Scholar PubMed PubMed Central

Sherman, D.M., Troyan, T.A., and Sherman, L.A. (1994). Localization of membrane proteins in the cyanobacterium Synechococcus sp. PCC7942 (radial asymmetry in the photosynthetic complexes). Plant Physiol. 106, 251–262.10.1104/pp.106.1.251Search in Google Scholar PubMed PubMed Central

Silver, S. (1969). Active transport of magnesium in Escherichia coli. Proc. Natl. Acad. Sci. USA 62, 764–771.10.1073/pnas.62.3.764Search in Google Scholar

Smith, R.L. and Maguire, M.E. (1995). Distribution of the CorA Mg2+ transport system in gram-negative bacteria. J. Bacteriol. 177, 1638–1640.10.1128/jb.177.6.1638-1640.1995Search in Google Scholar

Smith, R.L. and Maguire, M.E. (1998). Microbial magnesium transport: unusual transporters searching for identity. Mol. Microbiol. 28, 217–226.10.1046/j.1365-2958.1998.00810.xSearch in Google Scholar

Smith, D.L., Tao, T., and Maguire, M.E. (1993). Membrane topology of a P-type ATPase. The MgtB magnesium transport protein of Salmonella typhimurium. J. Biol. Chem. 268, 22469–22479.10.1016/S0021-9258(18)41553-0Search in Google Scholar

Snavely, M.D., Florer, J.B., Miller, C.G., and Maguire, M.E. (1989). Magnesium transport in Salmonella typhimurium: 28 Mg2+ transport by the CorA, MgtA, and MgtB systems. J. Bacteriol. 171, 4761–4766.10.1128/jb.171.9.4761-4766.1989Search in Google Scholar

Soncini, F.C., García Véscovi, E., Solomon, F., and Groisman, E.A. (1996). Molecular basis of the magnesium deprivation response in Salmonella typhimurium: identification of PhoP-regulated genes. J. Bacteriol. 178, 5092–5099.10.1128/jb.178.17.5092-5099.1996Search in Google Scholar

Stanier, R.Y. and Bazine, G.C. (1977). Phototrophic prokaryotes: the cyanobacteria. Annu. Rev. Microbiol. 31, 225–274.10.1146/annurev.mi.31.100177.001301Search in Google Scholar

Subramani, S., Perdreau-Dahl, H., and Morth, J.P. (2016). The magnesium transporter A is activated by cardiolipin and is highly sensitive to free magnesium in vitro. eLife 5, 11407.10.7554/eLife.11407Search in Google Scholar

Teuber, M., Rögner, M., and Berry, S. (2001). Fluorescent probes for non-invasive bioenergetic studies of whole cyanobacterial cells. Biochim. Biophys. Acta Bioenerg. 1506, 31–46.10.1016/S0005-2728(01)00178-5Search in Google Scholar

Tissières, A., Watson, J.D., Schlessinger, D., and Hollingworth, B.R. (1959). Ribonucleoprotein particles from Escherichia coli. J. Mol. Biol. 1, 221–233.10.1016/B978-0-12-131200-8.50005-8Search in Google Scholar

Utkilen, H.C. (1982). Magnesium-limited growth of the cyanobacterium Anacystis nidulans. Microbiology 128, 1849–1862.10.1099/00221287-128-8-1849Search in Google Scholar

Vavilin, D.V. and Vermaas, W.F.J. (2002). Regulation of the tetrapyrrole biosynthetic pathway leading to heme and chlorophyll in plants and cyanobacteria. Physiol. Plant. 115, 9–24.10.1034/j.1399-3054.2002.1150102.xSearch in Google Scholar

Véscovi, E.G., Soncini, F.C., and Groisman, E.A. (1996). Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 84, 165–174.10.1016/S0092-8674(00)81003-XSearch in Google Scholar

Von Wettstein, D., Gough, S., and Kannangara, C.G. (1995). Chlorophyll biosynthesis. Plant Cell 7, 1039–1057.10.1007/978-1-4615-3304-7_43Search in Google Scholar

Wacker, W.E.C. (1969). The biochemistry of magnesium. Ann. N.Y. Acad. Sci. 162, 717–726.10.1111/j.1749-6632.1969.tb13003.xSearch in Google Scholar

Wada, H. and Murata, N. (1989). Synechocystis PCC6803 mutants defective in desaturation of fatty acids. Plant Cell Physiol. 30, 971–978.Search in Google Scholar

Waldron, K.J. and Robinson, N.J. (2009). How do bacterial cells ensure that metalloproteins get the correct metal? Nat. Rev. Microbiol. 7, 25–35.10.1038/nrmicro2057Search in Google Scholar

Waldron, K.J., Rutherford, J.C., Ford, D., and Robinson, N.J. (2009). Metalloproteins and metal sensing. Nature 460, 823–830.10.1038/nature08300Search in Google Scholar

Webb, M. (1951). The influence of magnesium on cell division: 4. The specificity of magnesium. J. Gen. Microbiol. 5, 480–484.10.1099/00221287-5-3-480Search in Google Scholar

Wolf, F.I., Torsello, A., Fasanella, S., and Cittadini, A. (2003). Cell physiology of magnesium. Mol. Aspects Med. 24, 11–26.10.1016/S0098-2997(02)00088-2Search in Google Scholar

Wolosiuk, R.A., Hertig, C.M., Nishizawa, A.N., and Buchanan, B.B. (1982). Enzyme regulation in C 4 photosynthesis. FEBS Lett. 140, 31–35.10.1016/0014-5793(82)80514-0Search in Google Scholar

Received: 2018-12-21
Accepted: 2019-03-19
Published Online: 2019-03-26
Published in Print: 2019-10-25

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2018-0476/html
Scroll to top button