Abstract
In order to adapt to environmental changes, such as nutrient availability, cells have to orchestrate multiple metabolic pathways, which are catalyzed in distinct specialized organelles. Lipid droplets (LDs) and peroxisomes are both endoplasmic reticulum (ER)-derived organelles that fulfill complementary functions in lipid metabolism: Upon nutrient supply, LDs store metabolic energy in the form of neutral lipids and, when energy is needed, supply fatty acids for oxidation in peroxisomes and mitochondria. How these organelles communicate with each other for a concerted metabolic output remains a central question. Here, we summarize recent insights into the biogenesis and function of LDs and peroxisomes with emphasis on the role of PEX19 in these processes.
Acknowledgments
We are grateful to David Mick for critical reading of the manuscript and valuable comments. While we attempted a balanced literature review within the scope of this article, we apologize to all our colleagues whose work could not be cited due to space restrictions.
References
Agrawal, G., Joshi, S., and Subramani, S. (2011). Cell-free sorting of peroxisomal membrane proteins from the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 108, 9113–9118.10.1073/pnas.1018749108Suche in Google Scholar
Agrawal, G., Fassas, S.N., Xia, Z.J., and Subramani, S. (2016). Distinct requirements for intra-ER sorting and budding of peroxisomal membrane proteins from the ER. J. Cell Biol. 212, 335–348.10.1083/jcb.201506141Suche in Google Scholar
Agrawal, G., Shang, H.H., Xia, Z.J., and Subramani, S. (2017). Functional regions of the peroxin Pex19 necessary for peroxisome biogenesis. J. Biol. Chem. 292, 11547–11560.10.1074/jbc.M116.774067Suche in Google Scholar
Aranovich, A., Hua, R., Rutenberg, A.D., and Kim, P.K. (2014). PEX16 contributes to peroxisome maintenance by constantly trafficking PEX3 via the ER. J. Cell Sci. 127, 3675–3686.10.1242/jcs.146282Suche in Google Scholar
Bartz, R., Li, W.H., Venables, B., Zehmer, J.K., Roth, M.R., Welti, R., Anderson, R.G., Liu, P., and Chapman, K.D. (2007). Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J. Lipid Res. 48, 837–847.10.1194/jlr.M600413-JLR200Suche in Google Scholar
Bersuker, K. and Olzmann, J.A. (2017). Establishing the lipid droplet proteome: Mechanisms of lipid droplet protein targeting and degradation. Biochim. Biophys. Acta 1862, 1166–1177.10.1016/j.bbalip.2017.06.006Suche in Google Scholar
Binns, D., Januszewski, T., Chen, Y., Hill, J., Markin, V.S., Zhao, Y., Gilpin, C., Chapman, K.D., Anderson, R.G., and Goodman, J.M. (2006). An intimate collaboration between peroxisomes and lipid bodies. J. Cell Biol. 173, 719–731.10.1083/jcb.200511125Suche in Google Scholar
Blanchette-Mackie, E.J., Dwyer, N.K., Barber, T., Coxey, R.A., Takeda, T., Rondinone, C.M., Theodorakis, J.L., Greenberg, A.S., and Londos, C. (1995). Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. J. Lipid Res. 36, 1211–1226.10.1016/S0022-2275(20)41129-0Suche in Google Scholar
Buentzel, J., Vilardi, F., Lotz-Havla, A., Gartner, J., and Thoms, S. (2015). Conserved targeting information in mammalian and fungal peroxisomal tail-anchored proteins. Sci. Rep. 5, 17420.10.1038/srep17420Suche in Google Scholar PubMed PubMed Central
Chitraju, C., Mejhert, N., Haas, J.T., Diaz-Ramirez, L.G., Grueter, C.A., Imbriglio, J.E., Pinto, S., Koliwad, S.K., Walther, T.C., and Farese, R.V. Jr. (2017). Triglyceride synthesis by DGAT1 protects adipocytes from lipid-induced ER stress during lipolysis. Cell Metab. 26, 407–418.e3.10.1016/j.cmet.2017.07.012Suche in Google Scholar PubMed PubMed Central
Deb, R. and Nagotu, S. (2017). Versatility of peroxisomes: an evolving concept. Tissue Cell 49, 209–226.10.1016/j.tice.2017.03.002Suche in Google Scholar PubMed
Dimitrov, L., Lam, S.K., and Schekman, R. (2013). The role of the endoplasmic reticulum in peroxisome biogenesis. Cold Spring Harb. Perspect. Biol. 5, a013243.10.1101/cshperspect.a013243Suche in Google Scholar PubMed PubMed Central
Emmanouilidis, L., Schutz, U., Tripsianes, K., Madl, T., Radke, J., Rucktaschel, R., Wilmanns, M., Schliebs, W., Erdmann, R., and Sattler, M. (2017). Allosteric modulation of peroxisomal membrane protein recognition by farnesylation of the peroxisomal import receptor PEX19. Nat. Commun. 8, 14635.10.1038/ncomms14635Suche in Google Scholar PubMed PubMed Central
Falk, J., Rohde, M., Bekhite, M.M., Neugebauer, S., Hemmerich, P., Kiehntopf, M., Deufel, T., Hubner, C.A., and Beetz, C. (2014). Functional mutation analysis provides evidence for a role of REEP1 in lipid droplet biology. Hum. Mutat. 35, 497–504.10.1002/humu.22521Suche in Google Scholar PubMed
Fang, Y., Morrell, J.C., Jones, J.M., and Gould, S.J. (2004). PEX3 functions as a PEX19 docking factor in the import of class I peroxisomal membrane proteins. J. Cell Biol. 164, 863–875.10.1083/jcb.200311131Suche in Google Scholar PubMed PubMed Central
Fransen, M., Vastiau, I., Brees, C., Brys, V., Mannaerts, G.P., and Van Veldhoven, P.P. (2005). Analysis of human Pex19p’s domain structure by pentapeptide scanning mutagenesis. J. Mol. Biol. 346, 1275–1286.10.1016/j.jmb.2005.01.013Suche in Google Scholar PubMed
Girzalsky, W., Hoffmann, L.S., Schemenewitz, A., Nolte, A., Kunau, W.H., and Erdmann, R. (2006). Pex19p-dependent targeting of Pex17p, a peripheral component of the peroxisomal protein import machinery. J. Biol. Chem. 281, 19417–19425.10.1074/jbc.M603344200Suche in Google Scholar PubMed
Halbach, A., Lorenzen, S., Landgraf, C., Volkmer-Engert, R., Erdmann, R., and Rottensteiner, H. (2005). Function of the PEX19-binding site of human adrenoleukodystrophy protein as targeting motif in man and yeast. PMP targeting is evolutionarily conserved. J. Biol. Chem. 280, 21176–21182.10.1074/jbc.M501750200Suche in Google Scholar PubMed
Hua, R. and Kim, P.K. (2016). Multiple paths to peroxisomes: mechanism of peroxisome maintenance in mammals. Biochim. Biophys. Acta 1863, 881–891.10.1016/j.bbamcr.2015.09.026Suche in Google Scholar PubMed
Hua, R., Gidda, S.K., Aranovich, A., Mullen, R.T., and Kim, P.K. (2015). Multiple domains in PEX16 mediate its trafficking and recruitment of peroxisomal proteins to the ER. Traffic 16, 832–852.10.1111/tra.12292Suche in Google Scholar PubMed
Jones, J.M., Morrell, J.C., and Gould, S.J. (2004). PEX19 is a predominantly cytosolic chaperone and import receptor for class 1 peroxisomal membrane proteins. J. Cell Biol. 164, 57–67.10.1083/jcb.200304111Suche in Google Scholar PubMed PubMed Central
Joshi, A.S., Huang, X., Choudhary, V., Levine, T.P., Hu, J., and Prinz, W.A. (2016). A family of membrane-shaping proteins at ER subdomains regulates pre-peroxisomal vesicle biogenesis. J. Cell Biol. 215, 515–529.10.1083/jcb.201602064Suche in Google Scholar PubMed PubMed Central
Joshi, A.S., Choudhary, V., Levine, T.P., and Prinz, W.A. (2017). Lipid droplet and peroxisome biogenesis occur at the same ER subdomains. Manuscript preprint; doi: https://doi.org/10.1101/188433.10.1101/188433Suche in Google Scholar
Karnik, S.K. and Trelease, R.N. (2005). Arabidopsis peroxin 16 coexists at steady state in peroxisomes and endoplasmic reticulum. Plant Physiol. 138, 1967–1981.10.1104/pp.105.061291Suche in Google Scholar PubMed PubMed Central
Kassan, A., Herms, A., Fernandez-Vidal, A., Bosch, M., Schieber, N.L., Reddy, B.J., Fajardo, A., Gelabert-Baldrich, M., Tebar, F., Enrich, C., et al. (2013). Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. J. Cell Biol. 203, 985–1001.10.1083/jcb.201305142Suche in Google Scholar PubMed PubMed Central
Kim, P.K., Mullen, R.T., Schumann, U., and Lippincott-Schwartz, J. (2006). The origin and maintenance of mammalian peroxisomes involves a de novo PEX16-dependent pathway from the ER. J. Cell Biol. 173, 521–532.10.1083/jcb.200601036Suche in Google Scholar PubMed PubMed Central
Klemm, R.W., Norton, J.P., Cole, R.A., Li, C.S., Park, S.H., Crane, M.M., Li, L., Jin, D., Boye-Doe, A., Liu, T.Y., et al. (2013). A conserved role for atlastin GTPases in regulating lipid droplet size. Cell Rep. 3, 1465–1475.10.1016/j.celrep.2013.04.015Suche in Google Scholar PubMed PubMed Central
Knoops, K., Manivannan, S., Cepinska, M.N., Krikken, A.M., Kram, A.M., Veenhuis, M., and van der Klei, I.J. (2014). Preperoxisomal vesicles can form in the absence of Pex3. J. Cell Biol. 204, 659–668.10.1083/jcb.201310148Suche in Google Scholar PubMed PubMed Central
Lin, Y., Sun, L., Nguyen, L.V., Rachubinski, R.A., and Goodman, H.M. (1999). The Pex16p homolog SSE1 and storage organelle formation in Arabidopsis seeds. Science 284, 328–330.10.1126/science.284.5412.328Suche in Google Scholar PubMed
Lin, Y., Cluette-Brown, J.E., and Goodman, H.M. (2004). The peroxisome deficient Arabidopsis mutant sse1 exhibits impaired fatty acid synthesis. Plant Physiol. 135, 814–827.10.1104/pp.103.036772Suche in Google Scholar PubMed PubMed Central
Mayerhofer, P.U. (2016). Targeting and insertion of peroxisomal membrane proteins: ER trafficking versus direct delivery to peroxisomes. Biochim. Biophys. Acta 1863, 870–880.10.1016/j.bbamcr.2015.09.021Suche in Google Scholar PubMed
Mayerhofer, P.U., Bano-Polo, M., Mingarro, I., and Johnson, A.E. (2016). Human peroxin PEX3 is co-translationally integrated into the ER and exits the ER in budding vesicles. Traffic 17, 117–130.10.1111/tra.12350Suche in Google Scholar PubMed PubMed Central
Neufeld, C., Filipp, F.V., Simon, B., Neuhaus, A., Schuller, N., David, C., Kooshapur, H., Madl, T., Erdmann, R., Schliebs, W., et al. (2009). Structural basis for competitive interactions of Pex14 with the import receptors Pex5 and Pex19. EMBO J. 28, 745–754.10.1038/emboj.2009.7Suche in Google Scholar PubMed PubMed Central
Neuhaus, A., Kooshapur, H., Wolf, J., Meyer, N.H., Madl, T., Saidowsky, J., Hambruch, E., Lazam, A., Jung, M., Sattler, M., et al. (2014). A novel Pex14 protein-interacting site of human Pex5 is critical for matrix protein import into peroxisomes. J. Biol. Chem. 289, 437–448.10.1074/jbc.M113.499707Suche in Google Scholar PubMed PubMed Central
Nguyen, T.B., Louie, S.M., Daniele, J.R., Tran, Q., Dillin, A., Zoncu, R., Nomura, D.K., and Olzmann, J.A. (2017). DGAT1-dependent lipid droplet biogenesis protects mitochondrial function during starvation-induced autophagy. Dev. Cell 42, 9–21.e5.10.1016/j.devcel.2017.06.003Suche in Google Scholar PubMed PubMed Central
Novikoff, A.B., Novikoff, P.M., Rosen, O.M., and Rubin, C.S. (1980). Organelle relationships in cultured 3T3-L1 preadipocytes. J. Biol. Chem. 87, 180–196.10.1083/jcb.87.1.180Suche in Google Scholar PubMed PubMed Central
Renvoise, B., Malone, B., Falgairolle, M., Munasinghe, J., Stadler, J., Sibilla, C., Park, S.H., and Blackstone, C. (2016). Reep1 null mice reveal a converging role for hereditary spastic paraplegia proteins in lipid droplet regulation. Hum. Mol. Genet. 25, 5111–5125.10.1093/hmg/ddw315Suche in Google Scholar
Rottensteiner, H., Kramer, A., Lorenzen, S., Stein, K., Landgraf, C., Volkmer-Engert, R., and Erdmann, R. (2004). Peroxisomal membrane proteins contain common Pex19p-binding sites that are an integral part of their targeting signals. Mol. Biol. Cell 15, 3406–3417.10.1091/mbc.e04-03-0188Suche in Google Scholar PubMed PubMed Central
Rucktaschel, R., Thoms, S., Sidorovitch, V., Halbach, A., Pechlivanis, M., Volkmer, R., Alexandrov, K., Kuhlmann, J., Rottensteiner, H., and Erdmann, R. (2009). Farnesylation of pex19p is required for its structural integrity and function in peroxisome biogenesis. J. Biol. Chem. 284, 20885–20896.10.1074/jbc.M109.016584Suche in Google Scholar PubMed PubMed Central
Sacksteder, K.A., Jones, J.M., South, S.T., Li, X., Liu, Y., and Gould, S.J. (2000). PEX19 binds multiple peroxisomal membrane proteins, is predominantly cytoplasmic, and is required for peroxisome membrane synthesis. J. Cell Biol. 148, 931–944.10.1083/jcb.148.5.931Suche in Google Scholar PubMed PubMed Central
Sato, Y., Shibata, H., Nakatsu, T., Nakano, H., Kashiwayama, Y., Imanaka, T., and Kato, H. (2010). Structural basis for docking of peroxisomal membrane protein carrier Pex19p onto its receptor Pex3p. EMBO J. 29, 4083–4093.10.1038/emboj.2010.293Suche in Google Scholar PubMed PubMed Central
Schrader, M. (2001). Tubulo-reticular clusters of peroxisomes in living COS-7 cells: dynamic behavior and association with lipid droplets. J. Histochem. Cytochem. 49, 1421–1429.10.1177/002215540104901110Suche in Google Scholar PubMed
Schrul, B. and Kopito, R.R. (2016). Peroxin-dependent targeting of a lipid-droplet-destined membrane protein to ER subdomains. Nat. Cell Biol. 18, 740–751.10.1038/ncb3373Suche in Google Scholar PubMed PubMed Central
Schueller, N., Holton, S.J., Fodor, K., Milewski, M., Konarev, P., Stanley, W.A., Wolf, J., Erdmann, R., Schliebs, W., Song, Y.H., et al. (2010). The peroxisomal receptor Pex19p forms a helical mPTS recognition domain. EMBO J. 29, 2491–2500.10.1038/emboj.2010.115Suche in Google Scholar PubMed PubMed Central
Sugiura, A., Mattie, S., Prudent, J., and McBride, H.M. (2017). Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature 542, 251–254.10.1038/nature21375Suche in Google Scholar PubMed
Thazar-Poulot, N., Miquel, M., Fobis-Loisy, I., and Gaude, T. (2015). Peroxisome extensions deliver the Arabidopsis SDP1 lipase to oil bodies. Proc. Natl. Acad. Sci. USA 112, 4158–4163.10.1073/pnas.1403322112Suche in Google Scholar PubMed PubMed Central
Valm, A.M., Cohen, S., Legant, W.R., Melunis, J., Hershberg, U., Wait, E., Cohen, A.R., Davidson, M.W., Betzig, E., and Lippincott-Schwartz, J. (2017). Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546, 162–167.10.1038/nature22369Suche in Google Scholar PubMed PubMed Central
van der Zand, A., Gent, J., Braakman, I., and Tabak, H.F. (2012). Biochemically distinct vesicles from the endoplasmic reticulum fuse to form peroxisomes. Cell 149, 397–409.10.1016/j.cell.2012.01.054Suche in Google Scholar PubMed
Vastiau, I.M., Anthonio, E.A., Brams, M., Brees, C., Young, S.G., Van de Velde, S., Wanders, R.J., Mannaerts, G.P., Baes, M., Van Veldhoven, P.P., et al. (2006). Farnesylation of Pex19p is not essential for peroxisome biogenesis in yeast and mammalian cells. Cell Mol. Life Sci. 63, 1686–1699.10.1007/s00018-006-6110-ySuche in Google Scholar PubMed
Walther, T.C., Chung, J., and Farese, R.V. Jr. (2017). Lipid droplet biogenesis. Annu. Rev. Cell Dev. Biol. 33, 491–510.10.1146/annurev-cellbio-100616-060608Suche in Google Scholar PubMed PubMed Central
Wanders, R.J., Waterham, H.R., and Ferdinandusse, S. (2015). Metabolic interplay between peroxisomes and other subcellular organelles including mitochondria and the endoplasmic reticulum. Front Cell Dev. Biol. 3, 83.10.3389/fcell.2015.00083Suche in Google Scholar PubMed PubMed Central
Wilfling, F., Wang, H., Haas, J.T., Krahmer, N., Gould, T.J., Uchida, A., Cheng, J.X., Graham, M., Christiano, R., Frohlich, F., et al. (2013). Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev. Cell 24, 384–399.10.1016/j.devcel.2013.01.013Suche in Google Scholar PubMed PubMed Central
Wroblewska, J.P., Cruz-Zaragoza, L.D., Yuan, W., Schummer, A., Chuartzman, S.G., de Boer, R., Oeljeklaus, S., Schuldiner, M., Zalckvar, E., Warscheid, B., et al. (2017). Saccharomyces cerevisiae cells lacking Pex3 contain membrane vesicles that harbor a subset of peroxisomal membrane proteins. Biochim Biophys. Acta 1864, 1656–1667.10.1016/j.bbamcr.2017.05.021Suche in Google Scholar PubMed PubMed Central
Yifrach, E., Chuartzman, S.G., Dahan, N., Maskit, S., Zada, L., Weill, U., Yofe, I., Olender, T., Schuldiner, M., and Zalckvar, E. (2016). Characterization of proteome dynamics during growth in oleate reveals a new peroxisome-targeting receptor. J. Cell Sci. 129, 4067–4075.10.1242/jcs.195255Suche in Google Scholar
Yonekawa, S., Furuno, A., Baba, T., Fujiki, Y., Ogasawara, Y., Yamamoto, A., Tagaya, M., and Tani, K. (2011). Sec16B is involved in the endoplasmic reticulum export of the peroxisomal membrane biogenesis factor peroxin 16 (Pex16) in mammalian cells. Proc. Natl. Acad. Sci. USA 108, 12746–12751.10.1073/pnas.1103283108Suche in Google Scholar PubMed PubMed Central
Zimmermann, R., Strauss, J.G., Haemmerle, G., Schoiswohl, G., Birner-Gruenberger, R., Riederer, M., Lass, A., Neuberger, G., Eisenhaber, F., Hermetter, A., et al. (2004). Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306, 1383–1386.10.1126/science.1100747Suche in Google Scholar PubMed
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Highlight Issue ‘Molecular Basis of Life 2017’
- HIGHLIGHT: GBM Fall Meeting “Molecular Basis of Life 2017”
- Neuronal RNP granules: from physiological to pathological assemblies
- Regulation of LRRK2: insights from structural and biochemical analysis
- The role of (auto)-phosphorylation in the complex activation mechanism of LRRK2
- Oncogenic BRAFV600E drives expression of MGL ligands in the colorectal cancer cell line HT29 through N-acetylgalactosamine-transferase 3
- Hypoxia and serum deprivation induces glycan alterations in triple negative breast cancer cells
- Targeting autophagy for the treatment of cancer
- From molecules to patients: exploring the therapeutic role of soluble guanylate cyclase stimulators
- DNA-encoded libraries – an efficient small molecule discovery technology for the biomedical sciences
- Transcytosis of payloads that are non-covalently complexed to bispecific antibodies across the hCMEC/D3 blood-brain barrier model
- Mitochondrial contributions to neuronal development and function
- Intracellular communication between lipid droplets and peroxisomes: the Janus face of PEX19
- Protein crystallization in living cells
- Synthetic DNA filaments: from design to applications
- Spectroscopic characterization of the Co-substituted C-terminal domain of rubredoxin-2
- Twitch or swim: towards the understanding of prokaryotic motion based on the type IV pilus blueprint
Artikel in diesem Heft
- Frontmatter
- Highlight Issue ‘Molecular Basis of Life 2017’
- HIGHLIGHT: GBM Fall Meeting “Molecular Basis of Life 2017”
- Neuronal RNP granules: from physiological to pathological assemblies
- Regulation of LRRK2: insights from structural and biochemical analysis
- The role of (auto)-phosphorylation in the complex activation mechanism of LRRK2
- Oncogenic BRAFV600E drives expression of MGL ligands in the colorectal cancer cell line HT29 through N-acetylgalactosamine-transferase 3
- Hypoxia and serum deprivation induces glycan alterations in triple negative breast cancer cells
- Targeting autophagy for the treatment of cancer
- From molecules to patients: exploring the therapeutic role of soluble guanylate cyclase stimulators
- DNA-encoded libraries – an efficient small molecule discovery technology for the biomedical sciences
- Transcytosis of payloads that are non-covalently complexed to bispecific antibodies across the hCMEC/D3 blood-brain barrier model
- Mitochondrial contributions to neuronal development and function
- Intracellular communication between lipid droplets and peroxisomes: the Janus face of PEX19
- Protein crystallization in living cells
- Synthetic DNA filaments: from design to applications
- Spectroscopic characterization of the Co-substituted C-terminal domain of rubredoxin-2
- Twitch or swim: towards the understanding of prokaryotic motion based on the type IV pilus blueprint