Abstract
Kallikrein-related peptidase 6 (Klk6) is the most abundant serine proteinase in the adult central nervous system (CNS), yet we know little regarding its physiological roles or mechanisms of action. Levels of Klk6 in the extracellular environment are dynamically regulated in CNS injury and disease positioning this secreted enzyme to affect cell behavior by potential receptor dependent and independent mechanisms. Here we show that recombinant Klk6 evokes increases in intracellular Ca2+ in primary astrocyte monolayer cultures through activation of proteinase activated receptor 1 (PAR1). In addition, Klk6 promoted a condensation of astrocyte cortical actin leading to an elongated stellate shape and multicellular aggregation in a manner that was dependent on the presence of either PAR1 or PAR2. Klk6-evoked changes in astrocyte shape were accompanied by translocation of β-catenin from the plasma membrane to the cytoplasm. These data are exciting because they demonstrate that Klk6 can influence astrocyte plasticity through receptor-dependent mechanisms. Furthermore, this study expands our understanding of the mechanisms by which kallikreins can contribute to neural homeostasis and remodeling and point to both PAR1 and PAR2 as new therapeutic targets to modulate astrocyte form and function.
Funding source: National Institute of Neurological Disorders and Stroke
Award Identifier / Grant number: R01NS052741
Funding source: National Multiple Sclerosis Society
Award Identifier / Grant number: RG3367
Funding statement: These studies were supported by National Institute of Neurological Disorders and Stroke, R01NS052741 and (Funder Id: 10.13039/100000065) RG3367 from the National Multiple Sclerosis Society to I.A.S. The authors gratefully acknowledge Dr. Michael Blaber for kindly providing the recombinant Klk6.
References
Allen, M., Ghosh, S., Ahern, G.P., Villapol, S., Maguire-Zeiss, K.A., and Conant, K. (2016). Protease induced plasticity: matrix metalloproteinase-1 promotes neurostructural changes through activation of protease activated receptor 1. Sci. Rep. 6, 35497.10.1038/srep35497Search in Google Scholar PubMed PubMed Central
Anderson, M.A., Ao, Y., and Sofroniew, M.V. (2014). Heterogeneity of reactive astrocytes. Neurosci. Lett. 565, 23–29.10.1016/j.neulet.2013.12.030Search in Google Scholar PubMed PubMed Central
Angelo, P.F., Lima, A.R., Alves, F.M., Blaber, S.I., Scarisbrick, I.A., Blaber, M., Juliano, L., and Juliano, M.A. (2006). Substrate specificity of human kallikrein 6: salt and glycosaminoglycan activation effects. J. Biol. Chem. 281, 3116–3126.10.1074/jbc.M510096200Search in Google Scholar PubMed
Anisowicz, A., Sotiropoulou, G., Stenman, G., Mok, S.C., and Sager, R. (1996). A novel protease homolog differentially expressed in breast and ovarian cancer. Mol. Med. 2, 624–636.10.1007/BF03401646Search in Google Scholar
Ashby, E.L., Kehoe, P.G., and Love, S. (2010). Kallikrein-related peptidase 6 in Alzheimer’s disease and vascular dementia. Brain Res. 1363, 1–10.10.1016/j.brainres.2010.09.017Search in Google Scholar PubMed
Bernett, M.J., Blaber, S.I., Scarisbrick, I.A., Dhanarajan, P., Thompson, S.M., and Blaber, M. (2002). Crystal structure and biochemical characterization of human kallikrein 6 reveals that a trypsin-like kallikrein is expressed in the central nervous system. J. Biol. Chem. 277, 24562–24570.10.1074/jbc.M202392200Search in Google Scholar PubMed
Blaber, S.I., Scarisbrick, I.A., Bernett, M.J., Dhanarajan, P., Seavy, M.A., Jin, Y., Schwartz, M.A., Rodriguez, M., and Blaber, M. (2002). Enzymatic properties of rat myelencephalon-specific protease. Biochemistry 41, 1165–1173.10.1021/bi015781aSearch in Google Scholar PubMed
Blaber, S.I., Ciric, B., Christophi, G.P., Bernett, M.J., Blaber, M., Rodriguez, M., and Scarisbrick, I.A. (2004). Targeting kallikrein 6-proteolysis attenuates CNS inflammatory disease. FASEB J. 19, 920–922.10.1096/fj.03-1212fjeSearch in Google Scholar PubMed
Borgono, C.A., Miacovos, M.P., and Diamandis, E.P. (2004). Human tissue kallikreins: physiologic roles and applications in cancer. Mol. Cancer Res. 2, 257–280.10.1158/1541-7786.257.2.5Search in Google Scholar
Boven, L.A., Vergnolle, N., Henry, S.D., Silva, C., Imai, Y., Holden, J., Warren, K., Hollenberg, M.D., and Power, C. (2003). Up-regulation of proteinase-activated receptor 1 expression in astrocytes during HIV encephalitis. J. Immunol. 170, 2638–2646.10.4049/jimmunol.170.5.2638Search in Google Scholar PubMed
Burda, J.E., Radulovic, M., Yoon, H., and Scarisbrick, I. A. (2013). Critical role for PAR1 in kallikrein 6-mediated oligodendrogliopathy. Glia 61, 1456–1470.10.1002/glia.22534Search in Google Scholar
Citron, B.A., Smirnova, I.V., Arnold, P.M., and Festoff, B.W. (2000). Upregulation of neurotoxic serine proteases, prothrombin, and protease-activated receptor 1 early after spinal cord injury. J. Neurotrauma. 17, 1191–1203.10.1089/neu.2000.17.1191Search in Google Scholar
Diamandis, E.P., Yousef, G.M., Petraki, C., and Soosaipillai, A. R. (2000). Human kallikrein 6 as a biomarker of alzheimer’s disease. Clin. Biochem. 33, 663–667.10.1016/S0009-9120(00)00185-5Search in Google Scholar
Dong, Y., Tan, O.L., Loessner, D., Stephens, C., Walpole, C., Boyle, G.M., Parsons, P.G., and Clements, J.A. (2010). Kallikrein-related peptidase 7 promotes multicellular aggregation via the α(5)β(1) integrin pathway and paclitaxel chemoresistance in serous epithelial ovarian carcinoma. Cancer Res. 70, 2624–2633.10.1158/0008-5472.CAN-09-3415Search in Google Scholar PubMed
Dong, Y., Stephens, C., Walpole, C., Swedberg, J.E., Boyle, G.M., Parsons, P.G., McGuckin, M.A., Harris, J.M., and Clements, J.A. (2013). Paclitaxel resistance and multicellular spheroid formation are induced by kallikrein-related peptidase 4 in serous ovarian cancer cells in an ascites mimicking microenvironment. PLoS One 8, e57056.10.1371/journal.pone.0057056Search in Google Scholar PubMed PubMed Central
Drucker, K.L., Paulsen, A.R., Giannini, C., Decker, P.A., Blaber, S.I., Blaber, M., Uhm, J.H., O’Neill, B.P., Jenkins, R.B., and Scarisbrick, I.A. (2013). Clinical significance and novel mechanism of action of kallikrein 6 in glioblastoma. Neuro. Oncol. 15, 305–318.10.1093/neuonc/nos313Search in Google Scholar PubMed PubMed Central
Drucker, K.L., Gianinni, C., Decker, P.A., Diamandis, E.P., and Scarisbrick, I.A. (2015). Prognostic significance of multiple kallikreins in high-grade astrocytoma. BMC Cancer 15, 565.10.1186/s12885-015-1566-5Search in Google Scholar PubMed PubMed Central
Farmer, W.T. and Murai, K. (2017). Resolving astrocyte heterogeneity in the CNS. Front Cell Neurosci. 11, 300.10.3389/fncel.2017.00300Search in Google Scholar PubMed PubMed Central
Halassa, M.M., Dal Maschio, M., Beltramo, R., Haydon, P.G., Benfenati, F., and Fellin, T. (2010). Integrated brain circuits: neuron-astrocyte interaction in sleep-related rhythmogenesis. ScientificWorldJ. 10, 1634–1645.10.1100/tsw.2010.130Search in Google Scholar PubMed PubMed Central
Hamby, M.E., Coppola, G., Ao, Y., Geschwind, D.H., Khakh, B.S., and Sofroniew, M.V. (2012). Inflammatory mediators alter the astrocyte transcriptome and calcium signaling elicited by multiple G-protein-coupled receptors. J. Neurosci. 32, 14489–14510.10.1523/JNEUROSCI.1256-12.2012Search in Google Scholar PubMed PubMed Central
Iadecola, C. and Nedergaard, M. (2007). Glial regulation of the cerebral microvasculature. Nat. Neurosci. 10, 1369–1376.10.1038/nn2003Search in Google Scholar
Iwata, A., Maruyama, M., Akagi, T., Hashikawa, T., Kanazawa, I., Tsuji, S., and Nukina, N. (2003). Alpha-synuclein degradation by serine protease neurosin: implication for pathogenesis of synucleinopathies. Hum. Mol. Genet. 12, 2625–2635.10.1093/hmg/ddg283Search in Google Scholar
Junge, C.E., Sugawara, T., Mannaioni, G., Alagarsamy, S., Conn, P.J., Brat, D.J., Chan, P.H., and Traynelis, S.F. (2003). The contribution of protease-activated receptor 1 to neuronal damage caused by transient focal cerebral ischemia. Proc. Natl. Acad. Sci. USA 100, 13019–13024.10.1073/pnas.2235594100Search in Google Scholar
Junge, C.E., Lee, C.J., Hubbard, K.B., Zhang, Z., Olson, J.J., Hepler, J.R., Brat, D.J., and Traynelis, S.F. (2004). Protease-activated receptor-1 in human brain: localization and functional expression in astrocytes. Exp. Neurol. 188, 94–103.10.1016/j.expneurol.2004.02.018Search in Google Scholar
Kalluri, R. and Weinberg, R.A. (2009). The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428.10.1172/JCI39104Search in Google Scholar
Kasai, T., Tokuda, T., Yamaguchi, N., Watanabe, Y., Kametani, F., Nakagawa, M., and Mizuno, T. (2008). Cleavage of normal and pathological forms of alpha-synuclein by neurosin in vitro. Neurosci. Lett. 436, 52–56.10.1016/j.neulet.2008.02.057Search in Google Scholar
Laxmikanthan, G., Blaber, S.I., Bernett, M.J., Scarisbrick, I.A., Juliano, M.A., and Blaber, M. (2005). 1.70 Å X-ray structure of human apo kallikrein 1: structural changes upon peptide inhibitor/substrate binding. Proteins 58, 802–814.10.1002/prot.20368Search in Google Scholar
Little, S.P., Dixon, E.P., Norris, F., Buckley, W., Becker, G.W., Johnson, M., Dobbins, J.R., Wyrick, T., Miller, J.R., MacKellar, W., et al. (1997). Zyme, a novel and potentially amyloidogenic enzyme cDNA isolated from Alzheimer’s disease brain. J. Biol. Chem. 272, 25135–25142.10.1074/jbc.272.40.25135Search in Google Scholar
Magklara, A., Mellati, A.A., Wasney, G.A., Little, S.P., Sotiropoulou, G., Becker, G.W., and Diamandis, E.P. (2003). Characterization of the enzymatic activity of human kallikrein 6: autoactivation, substrate specificity, and regulation by inhibitors. Biochem. Biophys. Res. Commun. 307, 948–955.10.1016/S0006-291X(03)01271-3Search in Google Scholar
Morel, L., Chiang, M.S.R., Higashimori, H., Shoneye, T., Iyer, L.K., Yelick, J., Tai, A. and Yang, Y. (2017). Molecular and functional properties of regional astrocytes in the adult brain. J. Neurosci. 37, 8706–8717.10.1523/JNEUROSCI.3956-16.2017Search in Google Scholar PubMed PubMed Central
Nakanishi-Matsui, M., Zheng, Y.W., Sulciner, D.J., Weiss, E.J., Ludeman, M.J., and Coughlin, S.R. (2000). PAR3 is a cofactor for PAR4 activation by thrombin. Nature 404, 609–613.10.1038/35007085Search in Google Scholar PubMed
Nicole, O., Goldshmidt, A., Hamill, C.E., Sorensen, S.D., Sastre, A., Lyuboslavsky, P., Hepler, J.R., McKeon, R.J., and Traynelis, S. F. (2005). Activation of protease-activated receptor-1 triggers astrogliosis after brain injury. J. Neurosci. 25, 4319–4329.10.1523/JNEUROSCI.5200-04.2005Search in Google Scholar PubMed PubMed Central
Noorbakhsh, F., Vergnolle, N., Hollenberg, M.D., and Power, C. (2003). Proteinase-activated receptors in the nervous system. Nat. Rev. Neurosci. 4, 981–990.10.1038/nrn1255Search in Google Scholar PubMed
Noorbakhsh, F., Vergnolle, N., McArthur, J.C., Silva, C., Vodjgani, M., Andrade-Gordon, P., Hollenberg, M.D., and Power, C. (2005). Proteinase-activated receptor-2 induction by neuroinflammation prevents neuronal death during HIV infection. J. Immunol. 174, 7320–7329.10.4049/jimmunol.174.11.7320Search in Google Scholar PubMed
Noorbakhsh, F., Tsutsui, S., Vergnolle, N., Boven, L.A., Shariat, N., Vodjgani, M., Warren, K.G., Andrade-Gordon, P., Hollenberg, M.D., and Power, C. (2006). Proteinase-activated receptor 2 modulates neuroinflammation in experimental autoimmune encephalomyelitis and multiple sclerosis. J. Exp. Med. 203, 425–435.10.1084/jem.20052148Search in Google Scholar PubMed PubMed Central
Ogawa, K., Yamada, T., Tsujioka, Y., Taguchi, J., Takahashi, M., Tsuboi, Y., Fujino, Y., Nakajima, M., Yamamoto, T., Akatsu, H., et al. (2000). Localization of a novel type trypsin-like serine protease, neurosin, in brain tissues of Alzheimer’s disease and Parkinson’s disease. Psychiatry Clin. Neurosci. 54, 419–426.10.1046/j.1440-1819.2000.00731.xSearch in Google Scholar PubMed
Oikonomopoulou, K., Hansen, K.K., Saifeddine, M., Tea, I., Blaber, M., Blaber, S.I., Scarisbrick, I., Andrade-Gordon, P., Cottrell, G.S., Bunnett, N.W., et al. (2006a). Proteinase-activated receptors, targets for kallikrein signaling. J. Biol. Chem. 281, 32095–32112.10.1074/jbc.M513138200Search in Google Scholar PubMed
Oikonomopoulou, K., Hansen, K.K., Saifeddine, M., Vergnolle, N., Tea, I., Blaber, M., Blaber, S.I., Scarisbrick, I., Diamandis, E.P., and Hollenberg, M.D. (2006b). Kallikrein-mediated cell signalling: targeting proteinase-activated receptors (PARs). Biol. Chem. 387, 817–824.10.1515/BC.2006.104Search in Google Scholar PubMed
Ostrowska, E. and Reiser, G. (2008). The protease-activated receptor-3 (PAR-3) can signal autonomously to induce interleukin-8 release. Cell Mol. Life Sci. 65, 970–981.10.1007/s00018-008-7555-ySearch in Google Scholar PubMed
Pampalakis, G., Sykioti, V.S., Ximerakis, M., Stefanakou-Kalakou, I., Melki, R., Vekrellis, K., and Sotiropoulou, G. (2017). KLK6 proteolysis is implicated in the turnover and uptake of extracellular alpha-synuclein species. Oncotarget 8, 14502–14515.10.18632/oncotarget.13264Search in Google Scholar PubMed PubMed Central
Panos, M., Christophi, G.P., Rodriguez, M., and Scarisbrick, I.A. (2014). Differential expression of multiple kallikreins in a viral model of multiple sclerosis points to unique roles in the innate and adaptive immune response. Biol. Chem. 395, 1063–1073.10.1515/hsz-2014-0141Search in Google Scholar PubMed PubMed Central
Paul, I., Bhattacharya, S., Chatterjee, A., and Ghosh, M.K. (2013). Current understanding on EGFR and Wnt/beta-catenin signaling in glioma and their possible crosstalk. Genes Cancer 4, 427–446.10.1177/1947601913503341Search in Google Scholar PubMed PubMed Central
Pekny, M., Pekna, M., Messing, A., Steinhauser, C., Lee, J.M., Parpura, V., Hol, E.M., Sofroniew, M.V., and Verkhratsky, A. (2016). Astrocytes: a central element in neurological diseases. Acta Neuropathol. 131, 323–345.10.1007/s00401-015-1513-1Search in Google Scholar PubMed
Prassas, I., Eissa, A., Poda, G., and Diamandis, E.P. (2015). Unleashing the therapeutic potential of human kallikrein-related serine proteases. Nat. Rev. Drug Discov. 14, 183–202.10.1038/nrd4534Search in Google Scholar PubMed
Radulovic, M., Yoon, H., Larson, N., Wu, J., Linbo, R., Burda, J.E., Diamandis, E.P., Blaber, S.I., Blaber, M., Fehlings, M.G., et al. (2013). Kallikrein cascades in traumatic spinal cord injury: in vitro evidence for roles in axonopathy and neuron degeneration. J. Neuropathol. Exp. Neurol. 72, 1072–1089.10.1097/NEN.0000000000000007Search in Google Scholar PubMed PubMed Central
Radulovic, M., Yoon, H., Wu, J., Mustafa, K., Fehlings, M.G., and Scarisbrick, I.A. (2015). Genetic targeting of protease activated receptor 2 reduces inflammatory astrogliosis and improves recovery of function after spinal cord injury. Neurobiol. Dis. 83, 75–89.10.1016/j.nbd.2015.08.021Search in Google Scholar PubMed PubMed Central
Radulovic, M., Yoon, H., Wu, J., Mustafa, K., and Scarisbrick, I.A. (2016). Targeting the thrombin receptor modulates inflammation and astrogliosis to improve recovery after spinal cord injury. Neurobiol. Dis. 93, 226–242.10.1016/j.nbd.2016.04.010Search in Google Scholar PubMed PubMed Central
Rajput, P.S., Lyden, P.D., Chen, B., Lamb, J.A., Pereira, B., Lamb, A., Zhao, L., Lei, I.F., and Bai, J. (2014). Protease activated receptor-1 mediates cytotoxicity during ischemia using in vivo and in vitro models. Neuroscience 281C, 229–240.10.1016/j.neuroscience.2014.09.038Search in Google Scholar PubMed PubMed Central
Ramachandran, R., Eissa, A., Mihara, K., Oikonomopoulou, K., Saifeddine, M., Renaux, B., Diamandis, E., and Hollenberg, M.D. (2012). Proteinase-activated receptors (PARs): differential signalling by kallikrein-related peptidases KLK8 and KLK14. Biol. Chem. 393, 421–427.10.1515/hsz-2011-0251Search in Google Scholar PubMed
Rohatgi, T., Henrich-Noack, P., Sedehizade, F., Goertler, M., Wallesch, C.W., Reymann, K.G., and Reiser, G. (2004). Transient focal ischemia in rat brain differentially regulates mRNA expression of protease-activated receptors 1 to 4. J. Neurosci. Res. 75, 273–279.10.1002/jnr.10847Search in Google Scholar PubMed
Sandberg, C.J., Altschuler, G., Jeong, J., Stromme, K.K., Stangeland, B., Murrell, W., Grasmo-Wendler, U.H., Myklebost, O., Helseth, E., Vik-Mo, E.O., et al. (2013). Comparison of glioma stem cells to neural stem cells from the adult human brain identifies dysregulated Wnt- signaling and a fingerprint associated with clinical outcome. Exp. Cell Res. 319, 2230–2243.10.1016/j.yexcr.2013.06.004Search in Google Scholar
Scarisbrick, I.A., Towner, M.D., and Isackson, P.J. (1996). Induction of serine proteases in the adult rat spinal cord following kainic acid administration. Soc. Neurosci. Abs. 22, 746.10.1016/0736-5748(96)80242-5Search in Google Scholar
Scarisbrick, I.A., Towner, M.D., and Isackson, P. J. (1997). Nervous system specific expression of a novel serine protease: regulation in the adult rat spinal cord by excitotoxic injury. J. Neurosci. 17, 8156–8168.10.1523/JNEUROSCI.17-21-08156.1997Search in Google Scholar
Scarisbrick, I.A., Asakura, K., Blaber, S., Blaber, M., Isackson, P.J., Beito, T., Rodriguez, M., and Windebank, A.J. (2000). Preferential expression of myelencephalon specific protease by oligodendrocytes of the adult rat spinal cord white matter. Glia 30, 219–230.10.1002/(SICI)1098-1136(200005)30:3<219::AID-GLIA2>3.0.CO;2-2Search in Google Scholar
Scarisbrick, I.A. (2012). Kallikrein activity in the central nervous system. The Kallikreins. M. Schmitt, Sommerhoff, C., Fritz, H. and Magdolen, V. Berlin, De Gruyter Publishing: 349–372.Search in Google Scholar
Scarisbrick, I.A. and Blaber, M. (2012). Kallikrein-related peptidase 6. In: Handbook of proteolytic enzymes. A.J. Barrett and N.D. Rawlings, eds. (London, UK: Elsevier), pp. 2780–2786.10.1016/B978-0-12-382219-2.00612-8Search in Google Scholar
Scarisbrick, I.A., Blaber, S.I., Lucchinetti, C.F., Genain, C.P., Blaber, M., and Rodriguez, M. (2002). Activity of a newly identified serine protease in CNS demyelination. Brain 125, 1283–1296.10.1093/brain/awf142Search in Google Scholar
Scarisbrick, I.A., Sabharwal, P., Cruz, H., Larsen, N., Vandell, A., Blaber, S.I., Ameenuddin, S., Papke, L.M., Fehlings, M.G., Reeves, R.K., et al. (2006). Dynamic role of kallikrein 6 in traumatic spinal cord injury. Eur. J. Neurosci 24, 1457–1469.10.1111/j.1460-9568.2006.05021.xSearch in Google Scholar
Scarisbrick, I.A., Epstein, B., Cloud, B.A., Yoon, H., Wu, J., Renner, D.N., Blaber, S. I., Blaber, M., Vandell, A.G., and Bryson, A.L. (2011). Functional role of kallikrein 6 in regulating immune cell survival. PLoS One 6, e18376.10.1371/journal.pone.0018376Search in Google Scholar
Scarisbrick, I.A., Radulovic, M., Burda, J.E., Larson, N., Blaber, S.I., Giannini, C., Blaber, M., and Vandell, A.G. (2012a). Kallikrein 6 is a novel molecular trigger of reactive astrogliosis. Biol. Chem. 393, 355–367.10.1515/hsz-2011-0241Search in Google Scholar
Scarisbrick, I.A., Yoon, H., Panos, M., Larson, N., Blaber, S.I., Blaber, M., and Rodriguez, M. (2012b). Kallikrein 6 regulates early CNS demyelination in a viral model of multiple sclerosis. Brain Pathol. 22, 709–722.10.1111/j.1750-3639.2012.00577.xSearch in Google Scholar
Schrader, C.H., Kolb, M., Zaoui, K., Flechtenmacher, C., Grabe, N., Weber, K.J., Hielscher, T., Plinkert, P.K., and Hess, J. (2015). Kallikrein-related peptidase 6 regulates epithelial-to-mesenchymal transition and serves as prognostic biomarker for head and neck squamous cell carcinoma patients. Mol. Cancer 14, 107.10.1186/s12943-015-0381-6Search in Google Scholar PubMed PubMed Central
Shigetomi, E., Bowser, D.N., Sofroniew, M.V., and Khakh, B.S. (2008). Two forms of astrocyte calcium excitability have distinct effects on NMDA receptor-mediated slow inward currents in pyramidal neurons. J. Neurosci. 28, 6659–6663.10.1523/JNEUROSCI.1717-08.2008Search in Google Scholar PubMed PubMed Central
Silver, J. and Miller, J.H. (2004). Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5, 146–156.10.1038/nrn1326Search in Google Scholar PubMed
Sotiropoulou, G. and Pampalakis, G. (2010). Kallikrein-related peptidases: bridges between immune functions and extracellular matrix degradation. Biol. Chem. 391, 321–331.10.1515/bc.2010.036Search in Google Scholar
Spencer, B., Michael, S., Shen, J., Kosberg, K., Rockenstein, E., Patrick, C., Adame, A., and Masliah, E. (2013). Lentivirus mediated delivery of neurosin promotes clearance of wild-type alpha-synuclein and reduces the pathology in an alpha-synuclein model of LBD. Mol. Ther. 21, 31–41.10.1038/mt.2012.66Search in Google Scholar PubMed PubMed Central
Spencer, B., Valera, E., Rockenstein, E., Trejo-Morales, M., Adame, A., and Masliah, E. (2015). A brain-targeted, modified neurosin (kallikrein-6) reduces alpha-synuclein accumulation in a mouse model of multiple system atrophy. Mol. Neurodegener 10, 48.10.1186/s13024-015-0043-6Search in Google Scholar PubMed PubMed Central
Tatebe, H., Watanabe, Y., Kasai, T., Mizuno, T., Nakagawa, M., Tanaka, M., and Tokuda, T. (2010). Extracellular neurosin degrades α-synuclein in cultured cells. Neurosci. Res. 67, 341–346.10.1016/j.neures.2010.04.008Search in Google Scholar PubMed
Terayama, R., Bando, Y., Takahashi, T., and Yoshida, S. (2004). Differential expression of neuropsin and protease M/neurosin in oligodendrocytes after injury to the spinal cord. Glia 48, 91–101.10.1002/glia.20058Search in Google Scholar PubMed
Tong, X., Shigetomi, E., Looger, L.L., and Khakh, B.S. (2013). Genetically encoded calcium indicators and astrocyte calcium microdomains. Neuroscientist 19, 274–291.10.1177/1073858412468794Search in Google Scholar PubMed
Uchida, A., Oka, Y., Aoyama, M., Suzuki, S., Yokoi, T., Katano, H., Mase, M., Tada, T., Asai, K., and Yamada, K. (2004). Expression of myelencephalon-specific protease in transient middle cerebral artery occlusion model of rat brain. Brain Res. Mol. Brain Res. 126, 129–136.10.1016/j.molbrainres.2004.04.009Search in Google Scholar PubMed
Vandell, A.G., Larson, N., Laxmikanthan, G., Panos, M., Blaber, S.I., Blaber, M., and Scarisbrick, I.A. (2008). Protease activated receptor dependent and independent signaling by kallikreins 1 and 6 in CNS neuron and astroglial cell lines. J. Neurochem. 107, 855–870.10.1111/j.1471-4159.2008.05658.xSearch in Google Scholar
Verkhratsky, A., Orkand, R.K., and Kettenmann, H. (1998). Glial calcium: homeostasis and signaling function. Physiol. Rev. 78, 99–141.10.1152/physrev.1998.78.1.99Search in Google Scholar
Wang, H., Ubl, J.J., and Reiser, G. (2002). Four subtypes of protease-activated receptors, co-expressed in rat astrocytes, evoke different physiological signaling. Glia 37, 53–63.10.1002/glia.10012Search in Google Scholar
Wang, H., Wen, S., Bunnett, N.W., Leduc, R., Hollenberg, M.D., and MacNaughton, W.K. (2008). Proteinase-activated receptor-2 induces cyclooxygenase-2 expression through β-catenin and cyclic AMP-response element-binding protein. J. Biol. Chem. 283, 809–815.10.1074/jbc.M703021200Search in Google Scholar
Yamashiro, K., Tsuruoka, N., Kodama, S., Tsujimoto, M., Yamamura, Y., Tanaka, T., Nakazato, H., and Yamaguchi, N. (1997). Molecular cloning of a novel trypsin-like serine protease (neurosin) preferentially expressed in brain. Biochim. Biophys. Acta 1350, 11–14.10.1016/S0167-4781(96)00187-XSearch in Google Scholar
Yoon, H., Radulovic, M., Wu, J., Blaber, S.I., Blaber, M., Fehlings, M.G., and Scarisbrick, I.A. (2013). Kallikrein 6 signals through PAR1 and PAR2 to promote neuron injury and exacerbate glutamate neurotoxicity. J. Neurochem. 127, 283–298.10.1111/jnc.12293Search in Google Scholar
Yoon, H., Walters, G., Paulsen, A.R., and Scarisbrick, I.A. (2017). Astrocyte heterogeneity across the brain and spinal cord occurs developmentally, in adulthood and in response to demyelination. PLoS One 12, e0180697.10.1371/journal.pone.0180697Search in Google Scholar
Yuan, Y.M. and He, C. (2013). The glial scar in spinal cord injury and repair. Neurosci Bull 29, 421–435.10.1007/s12264-013-1358-3Search in Google Scholar
Zarghooni, M., Soosaipillai, A., Grass, L., Scorilas, A., Mirazimi, N., and Diamandis, E. P. (2002). Decreased concentration of human kallikrein 6 in brain extracts of Alzheimer’s disease patients. Clin. Biochem. 35, 225–231.10.1016/S0009-9120(02)00292-8Search in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Highlight: The 7th International Symposium on Kallikreins and Kallikrein-Related Peptidases
- Obituary
- Manfred Schmitt (1947–2018)
- Functional interrelationships between the kallikrein-related peptidases family and the classical kinin system in the human neutrophil
- Overview of tissue kallikrein and kallikrein-related peptidases in breast cancer
- Kallikrein-related peptidases in lung diseases
- The miRNA-kallikrein interaction: a mosaic of epigenetic regulation in cancer
- Mining human cancer datasets for kallikrein expression in cancer: the ‘KLK-CANMAP’ Shiny web tool
- Specificity profiling of human trypsin-isoenzymes
- Activation and activity of glycosylated KLKs 3, 4 and 11
- Microenvironment proteinases, proteinase-activated receptor regulation, cancer and inflammation
- Kallikrein-related peptidase 6 orchestrates astrocyte form and function through proteinase activated receptor-dependent mechanisms
- Kallikrein-related peptidase 5 and seasonal influenza viruses, limitations of the experimental models for activating proteases
- Novel splice variants of the human kallikrein-related peptidases 11 (KLK11) and 12 (KLK12), unraveled by next-generation sequencing technology
- Insights into the activity control of the kallikrein-related peptidase 6: small-molecule modulators and allosterism
- Kallikrein-related peptidase 14 is the second KLK protease targeted by the serpin vaspin
- Profiling system for skin kallikrein proteolysis applied in gene-deficient mouse models
- Evidence that cell surface localization of serine protease activity facilitates cleavage of the protease activated receptor CDCP1
- Kallikrein-related peptidase 7 overexpression in melanoma cells modulates cell adhesion leading to a malignant phenotype
- KLK5, a novel potential suppressor of vaginal carcinogenesis
Articles in the same Issue
- Frontmatter
- Highlight: The 7th International Symposium on Kallikreins and Kallikrein-Related Peptidases
- Obituary
- Manfred Schmitt (1947–2018)
- Functional interrelationships between the kallikrein-related peptidases family and the classical kinin system in the human neutrophil
- Overview of tissue kallikrein and kallikrein-related peptidases in breast cancer
- Kallikrein-related peptidases in lung diseases
- The miRNA-kallikrein interaction: a mosaic of epigenetic regulation in cancer
- Mining human cancer datasets for kallikrein expression in cancer: the ‘KLK-CANMAP’ Shiny web tool
- Specificity profiling of human trypsin-isoenzymes
- Activation and activity of glycosylated KLKs 3, 4 and 11
- Microenvironment proteinases, proteinase-activated receptor regulation, cancer and inflammation
- Kallikrein-related peptidase 6 orchestrates astrocyte form and function through proteinase activated receptor-dependent mechanisms
- Kallikrein-related peptidase 5 and seasonal influenza viruses, limitations of the experimental models for activating proteases
- Novel splice variants of the human kallikrein-related peptidases 11 (KLK11) and 12 (KLK12), unraveled by next-generation sequencing technology
- Insights into the activity control of the kallikrein-related peptidase 6: small-molecule modulators and allosterism
- Kallikrein-related peptidase 14 is the second KLK protease targeted by the serpin vaspin
- Profiling system for skin kallikrein proteolysis applied in gene-deficient mouse models
- Evidence that cell surface localization of serine protease activity facilitates cleavage of the protease activated receptor CDCP1
- Kallikrein-related peptidase 7 overexpression in melanoma cells modulates cell adhesion leading to a malignant phenotype
- KLK5, a novel potential suppressor of vaginal carcinogenesis