Abstract
In the 20th century, socioeconomic and environmental changes facilitated the reintroduction of mosquitoes in developing cities, resulting in the reinsertion of mosquito-borne viral diseases and the dispersal of their causative agents on a worldwide scale. Recurrent outbreaks of arboviral diseases are being reported, even in regions without a previous history of arboviral disease transmission. Of note, arboviral infections represented approximately 30% of all emerging vector-borne diseases in the last decade. Therapeutic strategies against infectious viral diseases include the use of different classes of molecules that act directly on the pathogen and/or act by optimizing the host immune response. Drugs targeting the virus usually provide amelioration of symptoms by suppressing and controlling the infection. However, it is limited by the short-window of effectiveness, ineffectiveness against latent viruses, development of drug-resistant mutants and toxic side effects. Disease may also be a consequence of an excessive, uncontrolled or misplaced inflammatory response, treatments that interfere in host immune response are interesting options and can be used isolated or in combination with virus-targeted therapies. The use of host-targeted therapies requires specific knowledge regarding host immune patterns that may trigger dengue virus (DENV), chikungunya virus (CHIKV) or Zika virus (ZIKV) disease.
References
Aagaard, K.M., Lahon, A., Suter, M.A., Arya, R.P., Seferovic, M.D., Vogt, M.B., Hu, M., Stossi, F., Mancini, M.A., Harris, R.A., et al. (2017). Primary human placental trophoblasts are permissive for Zika virus (ZIKV) replication. Sci. Rep. 7, 41389.10.1038/srep41389Suche in Google Scholar
Aliota, M.T., Caine, E.A., Walker, E.C., Larkin, K.E., Camacho, E., and Osorio, J.E. (2016). Characterization of lethal Zika virus infection in AG129 mice. PLoS Negl. Trop. Dis. 10, e0004682.10.1371/journal.pntd.0004682Suche in Google Scholar
Anaya, J.-M., Rodríguez, Y., Monsalve, D.M., Vega, D., Ojeda, E., González-Bravo, D., Rodríguez-Jiménez, M., Pinto-Díaz, C.A., Chaparro, P., Gunturiz, M.L., et al. (2017). A comprehensive analysis and immunobiology of autoimmune neurological syndromes during the Zika virus outbreak in Cúcuta, Colombia. J. Autoimmun. 77, 123–138.10.1016/j.jaut.2016.12.007Suche in Google Scholar
Andrade, D.V. and Harris, E. (2017). Recent advances in understanding the adaptative immune response to Zika virus and the effect of previous flavivirus exposure. Virus Res. pii: S0168-1702(17)30462-8.Suche in Google Scholar
Arend, W.P. (2002). The balance between IL-1 and IL-1Ra in disease. Cytokine Growth Factor Rev. 13, 323–340.10.1016/S1359-6101(02)00020-5Suche in Google Scholar
Aubry, M., Teissier, A., Huart, M., Merceron, S., Vanhomwegen, J., Roche, C., Vial, A.-L., Teururai, S., Sicard, S., Paulous, S., et al. (2017). Zika virus seroprevalence, French Polynesia, 2014–2015. Emerg. Infect. Dis. 23, 669–672.10.3201/eid2304.161549Suche in Google Scholar PubMed PubMed Central
Ballendine, S.A., Greba, Q., Dawicki, W., Zhang, X., Gordon, J.R., and Howland, J.G. (2015). Behavioral alterations in rat offspring following maternal immune activation and ELR-CXC chemokine receptor antagonism during pregnancy: implications for neurodevelopmental psychiatric disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 57, 155–165.10.1016/j.pnpbp.2014.11.002Suche in Google Scholar PubMed PubMed Central
Bardina, S.V., Bunduc, P., Tripathi, S., Duehr, J., Frere, J.J., Brown, J.A., Nachbagauer, R., Foster, G.A., Krysztof, D., Tortorella, D., et al. (2017). Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity. Science 356, 175–180.10.1126/science.aal4365Suche in Google Scholar PubMed PubMed Central
Barzon, L. and Pal, G. (2017). Current views on Zika virus vaccine development. Expert Opin. Biol. Ther. 17, 1185–1192.10.1080/14712598.2017.1346081Suche in Google Scholar PubMed
Bayer, A., Lennemann, N., Ouyang, Y., Bramley, J., Morosky, S., Marques, E., Cherry, S., Sadovsky, Y., and Coyne, C. (2016). Type III interferons produced by human placental trophoblasts confer protection against Zika virus infection. Cell Host Microbe 19, 705–712.10.1016/j.chom.2016.03.008Suche in Google Scholar PubMed PubMed Central
Bhatt, S., Gething, P.W., Brady, O.J., Messina, J.P., Farlow, A.W., Moyes, C.L., Drake, J.M., Brownstein, J.S., Hoen, A.G., Sankoh, O., et al. (2013). The global distribution and burden of dengue. Nature 496, 504–507.10.1038/nature12060Suche in Google Scholar PubMed PubMed Central
Boldescu, V., Behnam, M.A.M., Vasilakis, N., and Klein, C.D. (2017). Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond. Nat. Rev. Drug Discov. 16, 565–586.10.1038/nrd.2017.33Suche in Google Scholar PubMed PubMed Central
Bowen, J.R., Quicke, K.M., Maddur, M.S., O’Neal, J.T., McDonald, C.E., Fedorova, N.B., Puri, V., Shabman, R.S., Pulendran, B., and Suthar, M.S. (2017). Zika virus antagonizes type I interferon responses during infection of human dendritic cells. PLoS Pathog. 13, e1006164.10.1371/journal.ppat.1006164Suche in Google Scholar PubMed PubMed Central
Campion, E.W., Weaver, S.C., and Lecuit, M. (2015). Chikungunya virus and the global spread of a mosquito-borne disease. N. Engl. J. Med. 372, 1231–1239.10.1056/NEJMra1406035Suche in Google Scholar PubMed
Campos, G.S., Bandeira, A.C., and Sardi, S.I. (2015). Zika virus outbreak, Bahia, Brazil. Emerg. Infect. Dis. 21, 1885–1886.10.3201/eid2110.150847Suche in Google Scholar PubMed PubMed Central
Cao-Lormeau, V.-M. (2014). Zika Virus, French Polynesia, South Pacific, 2013. Emerg. Infect. Dis. 20, 1960–1960.10.3201/eid2011.141380Suche in Google Scholar PubMed PubMed Central
Cao-Lormeau, V.-M., Blake, A., Mons, S., Lastère, S., Roche, C., Vanhomwegen, J., Dub, T., Baudouin, L., Teissier, A., Larre, P., et al. (2016). Guillain-Barré syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 387, 1531–1539.10.1097/01.ogx.0000489564.35748.52Suche in Google Scholar
Castanha, P.M.S., Nascimento, E.J.M., Braga, C., Cordeiro, M.T., de Carvalho, O.V, de Mendonça, L.R., Azevedo, E.A.N., França, R.F.O., Dhalia, R., and Marques, E.T.A. (2017). Dengue virus-specific antibodies enhance Brazilian Zika virus infection. J. Infect. Dis. 215, 781–785.10.1093/infdis/jiw638Suche in Google Scholar PubMed PubMed Central
Chang, Z., Spong, C.Y., Jesus, A.A., Davis, M.A., Plass, N., Stone, D.L., Chapelle, D., Hoffmann, P., Kastner, D.L., Barron, K., Goldbach-Mansky, R.T., and Stratton, P. (2014). Anakinra use during pregnancy in patients with cryopyrin-associated periodic syndromes (CAPS). Arthritis Rheumatol. 66, 3227–3232.10.1002/art.38811Suche in Google Scholar PubMed PubMed Central
Chaudhary, V., Yuen, K.-S., Chan, J.F.-W., Chan, C.-P., Wang, P.-H., Cai, J.-P., Zhang, S., Liang, M., Kok, K.-H., Chan, C.-P., et al. (2017). Selective activation of type II interferon signaling by Zika virus NS5 protein. J. Virol. 91, e00163-17.10.1128/JVI.00163-17Suche in Google Scholar PubMed PubMed Central
Chen, W., Foo, S.-S., Taylor, A., Lulla, A., Merits, A., Hueston, L., Forwood, M.R., Walsh, N.C., Sims, N.A., Herrero, L.J., et al. (2015). Bindarit, an inhibitor of monocyte chemotactic protein synthesis, protects against bone loss induced by chikungunya virus infection. J. Virol. 89, 581–593.10.1128/JVI.02034-14Suche in Google Scholar PubMed PubMed Central
Chow, A., Her, Z., Ong, E.K.S., Chen, J.-M., Dimatatac, F., Kwek, D.J.C., Barkham, T., Yang, H., Renia, L., Leo, Y.-S., et al. (2011). Persistent arthralgia induced by Chikungunya virus infection is associated with interleukin-6 and granulocyte macrophage colony-stimulating factor. J. Infect. Dis. 203, 149–157.10.1093/infdis/jiq042Suche in Google Scholar PubMed PubMed Central
Cohen, S., Hurd, E., Cush, J., Schiff, M., Weinblatt, M.E., Moreland, L.W., Kremer, J., Bear, M.B., Rich, W.J., and McCabe, D. (2002). Treatment of rheumatoid arthritis with anakinra, a recombinant human interleukin-1 receptor antagonist, in combination with methotrexate: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 46, 614–624.10.1002/art.10141Suche in Google Scholar PubMed
Corry, J., Arora, N., Good, C.A., Sadovsky, Y., and Coyne, C.B. (2017). Organotypic models of type III interferon-mediated protection from Zika virus infections at the maternal-fetal interface. Proc. Natl. Acad. Sci. USA 35, 9433–9438.10.1073/pnas.1707513114Suche in Google Scholar PubMed PubMed Central
Costa, V.V., Fagundes, C.T., Valadão, D.F., Cisalpino, D., Dias, A.C.F., Silveira, K.D., Kangussu, L.M., Ávila, T.V., Bonfim, M.R.Q., Bonaventura, D., et al. (2012). A model of DENV-3 infection that recapitulates severe disease and highlights the importance of IFN-γ in host resistance to infection. PLoS Negl. Trop. Dis. 6, e1663.10.1371/journal.pntd.0001663Suche in Google Scholar PubMed PubMed Central
Costa, V.V., Fagundes, C.T., Souza D.G., Teixeira, M.M. (2013). Inflammatory and innate immune responses in dengue infection: protection versus disease induction. Am J Pathol. 182, 1950–1961.10.1016/j.ajpath.2013.02.027Suche in Google Scholar PubMed
Costa, V.V., Fagundes, C.T., Valadao, D.F., Avila, T.V., Cosalpino, D., Rocha, R.F., Ribeiro, L.S., Ascencao, F.R., Kangussu, L.M., Celso M.Q. Jr., et al. (2014). Subversion of early innate antiviral responses during antibody-dependent enhancement of Dengue virus infection induces severe disease in immunocompetent mice. Med Microbiol Immunol. 203, 231–350.10.1007/s00430-014-0334-5Suche in Google Scholar PubMed
Costa, V.V., Ye, W., Chen, Q., Teixeira, M.M., Preiser, P., Ooi, E.E., and Chen, J. (2017a) Dengue virus-infected dendritic cells, but not monocytes, activate natural killer cells through a contact-dependent mechanism involving adhesion molecules. MBio 8, e00741-17.10.1128/mBio.00741-17Suche in Google Scholar PubMed PubMed Central
Costa, V.V, Del Sarto, J.L., Rocha, R.F., Silva, F.R., Doria, J.G., Olmo, I.G., Marques, R.E., Queiroz-Junior, C.M., Foureaux, G., Araújo, J.M.S., et al. (2017b) N-methyl-D-aspartate (NMDA) receptor blockade prevents neuronal death induced by Zika virus infection. MBio. 8, e00350-17.10.1128/mBio.00350-17Suche in Google Scholar PubMed PubMed Central
Coyne, C.B. and Lazear, H.M. (2016). Zika virus – reigniting the TORCH. Nat. Rev. Microbiol. 14, 707–715.10.1038/nrmicro.2016.125Suche in Google Scholar PubMed
Crotty, S., Cameron, C.E., and Andino, R. (2001). RNA virus error catastrophe: direct molecular test by using ribavirin. Proc. Natl. Acad. Sci. USA 98, 6895–6900.10.1073/pnas.111085598Suche in Google Scholar PubMed PubMed Central
Dejnirattisai, W., Supasa, P., Wongwiwat, W., Rouvinski, A., Barba-Spaeth, G., Duangchinda, T., Sakuntabhai, A., Cao-Lormeau, V.-M., Malasit, P., Rey, F.A., et al. (2016). Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. Nat. Immunol. 17, 1102–1108.10.1038/ni.3515Suche in Google Scholar PubMed PubMed Central
de Lamballerie, X. (2015). CuraChik: A Trial of the Efficacy and Safety of Chloroquine as Therapeutic Treatment of Chikungunya Disease. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT00391313&cond=Chikungunya&draw=1&rank=1 (Accessed June 28, 2017).Suche in Google Scholar
Dowall, S.D., Graham, V.A., Rayner, E., Atkinson, B., Hall, G., Watson, R.J., Bosworth, A., Bonney, L.C., Kitchen, S., Hewson, R., et al. (2016). A susceptible mouse model for Zika virus infection. PLoS Negl. Trop. Dis. 10, e0004658.10.1371/journal.pntd.0004658Suche in Google Scholar PubMed PubMed Central
Duijster, J.W., Goorhuis, A., van Genderen, P.J.J., Visser, L.G., Koopmans, M.P., Reimerink, J.H., Grobusch, M.P., van der Eijk, A.A., van den Kerkhof, J.H.C.T., Reusken, C.B., et al. (2016). Zika virus infection in 18 travellers returning from Surinam and the Dominican Republic, The Netherlands, November 2015–March 2016. Infection 44, 797–802.10.1007/s15010-016-0906-ySuche in Google Scholar PubMed PubMed Central
Fagundes, C.T., Costa, V.V., Cisalpino, D., Amaral, F.A., Souza, P.R.S., Souza, R.S., Ryffel, B., Vieira, L.Q., Silva, T.A., Atrasheuskaya, A., et al. (2011). IFN-γ production depends on IL-12 and IL-18 combined action and mediates host resistance to Dengue virus infection in a nitric oxide-dependent manner. PLoS Negl. Trop. Dis. 5, e1449.10.1371/journal.pntd.0001449Suche in Google Scholar PubMed PubMed Central
Flipse, J., Diosa-Toro, M.A., Hoornweg, T.E., van de Pol, D.P.I., Urcuqui-Inchima, S., and Smit, J.M. (2016). Antibody-dependent enhancement of Dengue virus infection in primary human macrophages; balancing higher fusion against antiviral responses. Sci. Rep. 6, 29201.10.1038/srep29201Suche in Google Scholar PubMed PubMed Central
Förger, F. and Villiger, P.M. (2016). Treatment of rheumatoid arthritis during pregnancy: present and future. Expert Rev. Clin. Immunol. 12, 937–944.10.1080/1744666X.2016.1184973Suche in Google Scholar PubMed
Foy, B.D., Kobylinski, K.C., Foy, J.L.C., Blitvich, B.J., Travassos da Rosa, A., Haddow, A.D., Lanciotti, R.S., and Tesh, R.B. (2011). Probable non–vector-borne transmission of Zika virus, Colorado, USA. Emerg. Infect. Dis. 17, 880–882.10.3201/eid1705.101939Suche in Google Scholar PubMed PubMed Central
Freedman, A. and Steinberg, V.L. (1960). Chloroquine in rheumatoid arthritis; a double blindfold trial of treatment for one year. Ann. Rheum. Dis. 19, 243–50.10.1136/ard.19.3.243Suche in Google Scholar PubMed PubMed Central
Gack, M.U. and Diamond, M.S. (2016). Innate immune escape by Dengue and West Nile viruses. Curr. Opin. Virol. 20, 119–128.10.1016/j.coviro.2016.09.013Suche in Google Scholar PubMed PubMed Central
Gallegos, K.M., Drusano, G.L., D’argenio, D.Z., and Brown, A.N. (2016). Chikungunya virus: in vitro response to combination therapy with ribavirin and interferon α2a. J. Infect. Dis. 214, 1192–1197.10.1093/infdis/jiw358Suche in Google Scholar PubMed PubMed Central
Galliez, R.M., Spitz, M., Rafful, P.P., Cagy, M., Escosteguy, C., Spósito, C., Germano, B., Sasse, E., Gonçalves, A.L., Silveira, P.P. et al. (2016). Zika virus causing encephalomyelitis associated with immunoactivation. Open Forum Infect. Dis. 3, 1–4.10.1093/ofid/ofw203Suche in Google Scholar
Gasque, P., Couderc, T., Lecuit, M., Roques, P., and Ng, L.F.P. (2015). Chikungunya virus pathogenesis and immunity. Vector-Borne Zoonotic Dis. 15, 241–249.10.1089/vbz.2014.1710Suche in Google Scholar
Goodfellow, J.A. and Willison, H.J. (2016). Guillain–Barré syndrome: a century of progress. Nat. Rev. Neurol. 12, 723–731.10.1038/nrneurol.2016.172Suche in Google Scholar
Götestam Skorpen, C., Hoeltzenbein, M., Tincani, A., Fischer-Betz, R., Elefant, E., Chambers, C., da Silva, J., Nelson-Piercy, C., Cetin, I., Costedoat-Chalumeau, N., et al. (2016). The EULAR points to consider for use of antirheumatic drugs before pregnancy, and during pregnancy and lactation. Ann. Rheum. Dis. 75, 795–810.10.1136/annrheumdis-2015-208840Suche in Google Scholar
Grant, A., Ponia, S.S., Tripathi, S., Balasubramaniam, V., Miorin, L., Sourisseau, M., Schwarz, M.C., Sánchez-Seco, M.P., Evans, M.J., Best, S.M., et al. (2016). Zika virus targets human STAT2 to inhibit type I interferon signaling. Cell Host Microbe 19, 882–890.10.1016/j.chom.2016.05.009Suche in Google Scholar
Guabiraba, R., Marques, R.E., Besnard, A.-G., Fagundes, C.T., Souza, D.G., Ryffel, B., and Teixeira, M.M. (2010). Role of the chemokine receptors CCR1, CCR2 and CCR4 in the pathogenesis of experimental Dengue infection in mice. PLoS One 5, e15680.10.1371/journal.pone.0015680Suche in Google Scholar
Guabiraba, R., Besnard, A.-G., Marques, R.E., Maillet, I., Fagundes, C.T., Conceição, T.M., Rust, N.M., Charreau, S., Paris, I., Lecron, J.-C., et al. (2013). IL-22 modulates IL-17A production and controls inflammation and tissue damage in experimental dengue infection. Eur. J. Immunol. 43, 1529–1544.10.1002/eji.201243229Suche in Google Scholar
Gubler, D.J. (2002). The global emergence/resurgence of arboviral diseases as public health problems. Arch. Med. Res. 33, 330–342.10.1016/S0188-4409(02)00378-8Suche in Google Scholar
Hadinegoro, S.R., Arredondo-García, J.L., Capeding, M.R., Deseda, C., Chotpitayasunondh, T., Dietze, R., Hj Muhammad Ismail, H.I., Reynales, H., Limkittikul, K., Rivera-Medina, D.M., et al. (2015). Efficacy and long-term safety of a Dengue vaccine in regions of endemic disease. N. Engl. J. Med. 373, 1195–1206.10.1056/NEJMoa1506223Suche in Google Scholar PubMed
Halstead, S.B. (2017). Which Dengue vaccine approach is the most promising, and should we be concerned about enhanced disease after vaccination? There is only one true winner. Cold Spring Harb. Perspect. Biol. [Epub ahead of print]. Doi: 10.1101/cshperspect.a030700.10.1101/cshperspect.a030700Suche in Google Scholar PubMed PubMed Central
Hamel, R., Dejarnac, O., Wichit, S., Ekchariyawat, P., Neyret, A., Luplertlop, N., Perera-Lecoin, M., Surasombatpattana, P., Talignani, L., Thomas, F., et al. (2015). Biology of Zika virus infection in human skin cells. J. Virol. 89, 8880–8896.10.1128/JVI.00354-15Suche in Google Scholar PubMed PubMed Central
Harinasuta, C., Nimmanitya, S., and Titsyakorn, U. (1985). The effect of interferon-αA on two cases of Japanese encephalitis in Thailand. Southeast Asian J. Trop. Med. Public Health. 16, 332–6.Suche in Google Scholar
Hawman, D.W., Stoermer, K.A., Montgomery, S.A., Pal, P., Oko, L., Diamond, M.S., and Morrison, T.E. (2013). Chronic joint disease caused by persistent Chikungunya virus infection is controlled by the adaptive immune response. J. Virol. 87, 13878–13888.10.1128/JVI.02666-13Suche in Google Scholar PubMed PubMed Central
Her, Z., Malleret, B., Chan, M., Ong, E.K.S., Wong, S.C., Kwek, D.J.C., Tolou, H., Lin, R.T.P., Tambyah, P.A., Renia, L., et al. (2010). Active infection of human blood monocytes by Chikungunya virus triggers an innate immune response. J. Immunol. 184, 5903–5913.10.4049/jimmunol.0904181Suche in Google Scholar PubMed
Hoarau, J.J., Jaffar Bandjee, M.C., Krejbich Trotot, P., Das, T., Li-Pat-Yuen, G., Dassa, B., Denizot, M., Guichard, E., Ribera, A., Henni, T., et al. (2010). Persistent chronic inflammation and infection by Chikungunya arthritogenic alphavirus in spite of a robust host immune response. J. Immunol. 184, 5914–5927.10.4049/jimmunol.0900255Suche in Google Scholar PubMed
Hottz, E.D., Lopes, J.F., Freitas, C., Valls-de-Souza, R., Oliveira, M.F., Bozza, M.T., Da Poian, A.T., Weyrich, A.S., Zimmerman, G.A., Bozza, F.A., et al. (2013). Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation. Blood 122, 3405–3414.10.1182/blood-2013-05-504449Suche in Google Scholar PubMed PubMed Central
Hughes, B.W., Addanki, K.C., Sriskanda, A.N., McLean, E., and Bagasra, O. (2016). Infectivity of immature neurons to Zika virus: a link to congenital Zika syndrome. EBioMedicine 10, 65–70.10.1016/j.ebiom.2016.06.026Suche in Google Scholar PubMed PubMed Central
Javelle, E., Ribera, A., Degasne, I., Gaüzère, B.A., Marimoutou, C., and Simon, F. (2015). Specific management of post-chikungunya rheumatic disorders: a retrospective study of 159 cases in Reunion Island from 2006–2012. PLoS Negl. Trop. Dis. 9, 1–18.10.1371/journal.pntd.0003603Suche in Google Scholar PubMed PubMed Central
Jones, K.E., Patel, N.G., Levy, M.A., Storeygard, A., Balk, D., Gittleman, J.L., and Daszak, P. (2008). Global trends in emerging infectious diseases. Nature 451, 990–993.10.1038/nature06536Suche in Google Scholar PubMed PubMed Central
Journel, I., Andrécy, L.L., Metellus, D., Pierre, J.S., Faublas, R.M., Juin, S., Dismer, A.M., Fitter, D.L., Neptune, D., Laraque, M.J., et al. (2017). Transmission of Zika virus – Haiti, October 12, 2015–September 10, 2016. MMWR. Morb. Mortal. Wkly. Rep. 66, 172–176.10.15585/mmwr.mm6606a4Suche in Google Scholar PubMed PubMed Central
Kelvin, A.A., Banner, D., Silvi, G., Moro, M.L., Spataro, N., Gaibani, P., Cavrini, F., Pierro, A., Rossini, G., Cameron, M.J., et al. (2011). Inflammatory cytokine expression is associated with Chikungunya virus resolution and symptom severity. PLoS Negl. Trop. Dis. 5, e1279.10.1371/journal.pntd.0001279Suche in Google Scholar PubMed PubMed Central
Kim, J.H., Patil, A.M., Choi, J.Y., Kim, S.B., Uyangaa, E., Hossain, F.M.A., Park, S.-Y., Lee, J.H., and Eo, S.K. (2016). CCR5 ameliorates Japanese encephalitis via dictating the equilibrium of regulatory CD4+Foxp3+ T and IL-17+CD4+ Th17 cells. J. Neuroinflammation 13, 223.10.1186/s12974-016-0656-xSuche in Google Scholar
Khan, M., Santhosh, S.R., Tiwari, M., Lakshmana Rao, P.V., and Parida, M. (2010). Assessment of in vitro prophylactic and therapeutic efficacy of chloroquine against chikungunya virus in vero cells. J. Med. Virol. 82, 817–824.10.1002/jmv.21663Suche in Google Scholar
Kuhn, R.J., Zhang, W., Rossmann, M.G., Pletnev, S.V., Corver, J., Lenches, E., Jones, C.T., Mukhopadhyay, S., Chipman, P.R., Strauss, E.G., et al. (2002). Structure of Dengue virus. Cell 108, 717–725.10.1016/S0092-8674(02)00660-8Suche in Google Scholar
Kuno, G. and Chang, G.-J.J. (2005). Biological transmission of arboviruses: reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin. Microbiol. Rev. 18, 608–637.10.1128/CMR.18.4.608-637.2005Suche in Google Scholar PubMed PubMed Central
Labadie, K. (2010). Chikungunya disease in nonhuman primates leads to long-term viral persistence in macrophages. J Clin Invest. 120, 1–13.10.1172/JCI40104Suche in Google Scholar PubMed PubMed Central
Lamballerie, X.D., Boisson, V., Reynier, J.-C., Enault, S., Charrel, R.N., Flahault, A., Roques, P., and Le Grand, R. (2008). On chikungunya acute infection and chloroquine treatment. Vector-Borne Zoonotic Dis. 8, 837–840.10.1089/vbz.2008.0049Suche in Google Scholar PubMed
Lazear, H.M. and Diamond, M.S. (2016). Zika virus: new clinical syndromes and its emergence in the Western hemisphere. J. Virol. 90, 4864–4875.10.1128/JVI.00252-16Suche in Google Scholar PubMed PubMed Central
Lazear, H.M., Govero, J., Smith, A.M., Platt, D.J., Fernandez, E., Miner, J.J., and Diamond, M.S. (2016). A mouse model of Zika virus pathogenesis. Cell Host Microbe 19, 720–730.10.1016/j.chom.2016.03.010Suche in Google Scholar PubMed PubMed Central
Leviton, A., Kuban, K.C.K., Allred, E.N., Fichorova, R.N., O’Shea, T.M., Paneth, N., and ELGAN Study Investigators (2011). Early postnatal blood concentrations of inflammation-related proteins and microcephaly two years later in infants born before the 28th post-menstrual week. Early Hum. Dev. 87, 325–330.10.1016/j.earlhumdev.2011.01.043Suche in Google Scholar PubMed
Liu, S., DeLalio, L.J., Isakson, B.E., and Wang, T.T. (2016a). AXL-mediated productive infection of human endothelial cells by Zika virus. Circ. Res. 119, 1183–1189.10.1161/CIRCRESAHA.116.309866Suche in Google Scholar PubMed PubMed Central
Liu, Y., Liu, J., and Cheng, G. (2016b). Vaccines and immunization strategies for dengue prevention. Emerg. Microbes Infect. 5, e77.10.1038/emi.2016.74Suche in Google Scholar
Low, J.G., Sung, C., Wijaya, L., Wei, Y., Rathore, A.P.S., Watanabe, S., Tan, B.H., Toh, L., Chua, L.T., Hou, Y., et al. (2014). Efficacy and safety of celgosivir in patients with dengue fever (CELADEN): a phase 1b, randomised, double-blind, placebo-controlled, proof-of-concept trial. Lancet Infect. Dis. 14, 706–715.10.1016/S1473-3099(14)70730-3Suche in Google Scholar
Mahalingam, S., Teixeira, M.M., and Halstead, S.B. (2017). Zika enhancement: a reality check. Lancet Infect. Dis. 17, 686–688.10.1016/S1473-3099(17)30340-7Suche in Google Scholar
Marques, R.E., Guabiraba, R., Russo, R.C., and Teixeira, M.M. (2013). Targeting CCL5 in inflammation. Expert Opin. Ther. Targets. 17, 1439–1460.10.1517/14728222.2013.837886Suche in Google Scholar PubMed PubMed Central
Marques, R.E., Guabiraba, R., Cisalpino, D., Teixeira, M.M., and Souza, D.G. (2014). Dengue. Colloq. Ser. Integr. Syst. Physiol. From Mol. Funct. 6, 1–104.10.4199/C00103ED1V01Y201402ISP049Suche in Google Scholar
Marques, R.E., Guabiraba, R., Del Sarto, J.L., Rocha, R.F., Queiroz, A.L., Cisalpino, D., Marques, P.E., Pacca, C.C., Fagundes, C.T., Menezes, G.B., et al. (2015). Dengue virus requires the CC-chemokine receptor CCR5 for replication and infection development. Immunology 145, 583–596.10.1111/imm.12476Suche in Google Scholar PubMed PubMed Central
Martinez, F.O. and Gordon, S. (2014). The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6, 13.10.12703/P6-13Suche in Google Scholar PubMed PubMed Central
Massad, E., Tan, S.-H., Khan, K., and Wilder-Smith, A. (2016). Estimated Zika virus importations to Europe by travellers from Brazil. Glob. Health Action 9, 31669.10.3402/gha.v9.31669Suche in Google Scholar PubMed PubMed Central
McCarthy, M. (2016). First US case of Zika virus infection is identified in Texas. Br. Med J. 352, i212.10.1136/bmj.i212Suche in Google Scholar PubMed
McGrath, E.L., Rossi, S.L., Gao, J., Widen, S.G., Grant, A.C., Dunn, T.J., Azar, S.R., Roundy, C.M., Xiong, Y., Prusak, D.J., et al. (2017). Differential responses of human fetal brain neural stem cells to Zika virus infection. Stem Cell Rep. 8, 715–727.10.1016/j.stemcr.2017.01.008Suche in Google Scholar PubMed PubMed Central
Md Yusof, M.Y. and Emery, P. (2013). Targeting interleukin-6 in rheumatoid arthritis. Drugs 73, 341–356.10.1007/s40265-013-0018-2Suche in Google Scholar
Meertens, L., Carnec, X., Lecoin, M.P., Ramdasi, R., Guivel-Benhassine, F., Lew, E., Lemke, G., Schwartz, O., and Amara, A. (2012). The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe 12, 544–557.10.1016/j.chom.2012.08.009Suche in Google Scholar
Miller, J.L., deWet, B.J.M., Martinez-Pomares, L., Radcliffe, C.M., Dwek, R.A., Rudd, P.M., and Gordon, S. (2008). The mannose receptor mediates Dengue Virus infection of macrophages. PLoS Pathog. 4, e17.10.1371/journal.ppat.0040017Suche in Google Scholar
Modi, W.S., Dean, M., Seuanez, H.N., Mukaida, N., Matsushima, K., and O’Brien, S.J. (1990). Monocyte-derived neutrophil chemotactic factor (MDNCF/IL-8) resides in a gene cluster along with several other members of the platelet factor 4 gene superfamily. Hum. Genet. 84, 185–7.10.1007/BF00208938Suche in Google Scholar
Mosa, C., Trizzino, A., Trizzino, A., Di Marco, F., D’Angelo, P., and Farruggia, P. (2014). Treatment of human papillomavirus infection with interferon α and ribavirin in a patient with acquired aplastic anemia. Int. J. Infect. Dis. 23, 25–27.10.1016/j.ijid.2013.11.021Suche in Google Scholar
Musso, D., Nhan, T., Robin, E., Roche, C., Bierlaire, D., Zisou, K., Shan Yan, A., Cao-Lormeau, V.M., and Broult, J. (2014). Potential for Zika virus transmission through blood transfusion demonstrated during an outbreak in French Polynesia, November 2013 to February 2014. Euro Surveill. 19, 201761.10.2807/1560-7917.ES2014.19.14.20761Suche in Google Scholar
Nahmias, A.J., Josey, W.E., Naib, Z.M., Freeman, M.G., Fernandez, R.J., and Wheeler, J.H. (1971). Perinatal risk associated with maternal genital herpes simplex virus infection. Am. J. Obstet. Gynecol. 110, 825–37.10.1016/0002-9378(71)90580-1Suche in Google Scholar
Ng, L.F.P., Chow, A., Sun, Y.J., Kwek, D.J.C., Lim, P.L., Dimatatac, F., Ng, L.C., Ooi, E.E., Chao, K.H., Her, Z., et al. (2009). IL-1B, IL-6, and RANTES as biomarkers of Chikungunya severity. PLoS One 4, 1–8.10.1371/journal.pone.0004261Suche in Google Scholar PubMed PubMed Central
Nguyen, T.H.T., Nguyen, T.H.Q., Vu, T.T., Farrar, J., Hoang, T.L., Dong, T.H.T., Ngoc Tran, V., Phung, K.L., Wolbers, M., Whitehead, S.S., et al. (2013). Corticosteroids for Dengue – why don’t they work? PLoS Negl. Trop. Dis. 7, e2592.10.1371/journal.pntd.0002592Suche in Google Scholar PubMed PubMed Central
Olmo, I.G., Carvalho, T.G., Costa, V.V., Alves-Silva, J., Ferrari, C.Z., Izidoro-Toledo, T.C., da Silva, J.F., Teixeira, A.L., Souza, D.G., Marques, J.T., et al. (2017). Zika virus promotes neuronal cell death in a non-cell autonomous manner by triggering the release of neurotoxic factors. Front. Immunol. 8, 1016.10.3389/fimmu.2017.01016Suche in Google Scholar PubMed PubMed Central
Ornelas, A.M.M., Pezzuto, P., Silveira, P.P., Melo, F.O., Ferreira, T.A., Oliveira-Szejnfeld, P.S., Leal, J.I., Amorim, M.M.R., Hamilton, S., Rawlinson, W.D., et al. (2017). Immune activation in amniotic fluid from Zika virus-associated microcephaly. Ann. Neurol. 81, 152–156.10.1002/ana.24839Suche in Google Scholar PubMed
Pang, T., Cardosa, M.J., Guzman, M.G., Azeredo, E.L., Nogueira, R.M., Assis, E.F., Bozza, P.T., Kubelka, C.F., Chen, S., and Liu, H. (2007). Of cascades and perfect storms: the immunopathogenesis of dengue haemorrhagic fever-dengue shock syndrome (DHF/DSS). Immunol. Cell Biol. 85, 43–45.10.1038/sj.icb.7100008Suche in Google Scholar PubMed
Pantoja, P., Pérez-Guzmán, E.X., Rodríguez, I.V., White, L.J., González, O., Serrano, C., Giavedoni, L., Hodara, V., Cruz, L., Arana, T., et al. (2017). Zika virus pathogenesis in rhesus macaques is unaffected by pre-existing immunity to dengue virus. Nat. Commun. 8, 15674.10.1038/ncomms15674Suche in Google Scholar PubMed PubMed Central
Peng, M., Watanabe, S., Chan, K.W.K., He, Q., Zhao, Y., Zhang, Z., Lai, X., Luo, D., Vasudevan, S.G., and Li, G. (2017). Luteolin restricts dengue virus replication through inhibition of the proprotein convertase furin. Antiviral Res. 143, 176–185.10.1016/j.antiviral.2017.03.026Suche in Google Scholar PubMed
Plummer, E., Buck, M.D., Sanchez, M., Greenbaum, J.A., Turner, J., Grewal, R., Klose, B., Sampath, A., Warfield, K.L., Peters, B., et al. (2015). Dengue virus evolution under a host-targeted antiviral. J. Virol. 89, 5592–5601.10.1128/JVI.00028-15Suche in Google Scholar PubMed PubMed Central
Pomar, L., Malinger, G., Benoist, G., Carles, G., Ville, Y., Rousset, D., Hcini, N., Pomar, C., Jolivet, A., and Lambert, V. (2017). Association between Zika virus and fetopathy: a prospective cohort study in French Guiana. Preliminary report. Ultrasound Obstet. Gynecol. 49, 729–736.10.1002/uog.17404Suche in Google Scholar PubMed
Powell, J.R., Tabachnick, W.J., Powell, J.R., and Tabachnick, W.J. (2013). History of domestication and spread of Aedes aegypti – a review. Mem. Inst. Oswaldo Cruz 108, 11–17.10.1590/0074-0276130395Suche in Google Scholar PubMed PubMed Central
Rasmussen, S.A., Jamieson, D.J., Honein, M.A., and Petersen, L.R. (2016). Zika virus and birth defects – reviewing the evidence for causality. N. Engl. J. Med. 374, 1981–1987.10.1056/NEJMsr1604338Suche in Google Scholar PubMed
Ravichandran, R. and Manian, M. (2008). Ribavirin therapy for Chikungunya arthritis. J. Infect. Dev. Ctries. 2, 140–142.10.3855/T2.2.140Suche in Google Scholar
Ren, K. and Torres, R. (2009). Role of interleukin-1β during pain and inflammation. Brain Res. Rev. 60, 57–64.10.1016/j.brainresrev.2008.12.020Suche in Google Scholar PubMed PubMed Central
Renneson, J., Guabiraba, R., Maillet, I., Marques, R.E., Ivanov, S., Fontaine, J., Paget, C., Quesniaux, V., Faveeuw, C., Ryffel, B., et al. (2011). A detrimental role for invariant natural killer T cells in the pathogenesis of experimental Dengue virus infection. Am. J. Pathol. 179, 1872–1883.10.1016/j.ajpath.2011.06.023Suche in Google Scholar
Rodrigo Pegado Freitas. (2017). tDCS and Its therapeutic effects in CK fever. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02993952&cond=Chikungunya&draw=1&rank=13 (Accessed June 28, 2017).Suche in Google Scholar
Rong, L. and Perelson, A.S. (2010). Treatment of hepatitis C virus infection with interferon and small molecule direct antivirals: viral kinetics and modeling. Crit. Rev. Immunol. 30, 131–148.10.1615/CritRevImmunol.v30.i2.30Suche in Google Scholar
Rothman, A.L. (2011). Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat. Rev. Immunol. 11, 532–543.10.1038/nri3014Suche in Google Scholar
Ruiz Silva, M., van der Ende-Metselaar, H., Mulder, H.L., Smit, J.M., and Rodenhuis-Zybert, I.A. (2016). Mechanism and role of MCP-1 upregulation upon Chikungunya virus infection in human peripheral blood mononuclear cells. Sci. Rep. 6, 32288.10.1038/srep32288Suche in Google Scholar
Rulli, N.E., Rolph, M.S., Srikiatkhachorn, A., Anantapreecha, S., Guglielmotti, A., and Mahalingam, S. (2011). Protection from arthritis and myositis in a mouse model of acute Chikungunya virus disease by bindarit, an inhibitor of monocyte chemotactic protein-1 synthesis. J. Infect. Dis. 204, 1026–1030.10.1093/infdis/jir470Suche in Google Scholar
Schneider, W.M., Chevillotte, M.D., and Rice, C.M. (2014). Interferon-stimulated genes: a complex web of host defenses. Annu. Rev. Immunol. 32, 513–545.10.1146/annurev-immunol-032713-120231Suche in Google Scholar
Schul, W., Liu, W., Xu, H., Flamand, M., and Vasudevan, S.G. (2007). A Dengue fever viremia model in mice shows reduction in viral replication and suppression of the inflammatory response after treatment with antiviral drugs. J. Infect. Dis. 195, 665–674.10.1086/511310Suche in Google Scholar
Schwarz, T.F. (2016). Is discussion of dengue vaccination for the 2016 Olympics necessary? Lancet 388, 1881.10.1016/S0140-6736(16)31807-4Suche in Google Scholar
Sharma, S.K. (2017). Efficacy of Starting Methotrexate Early in Chikungunya Arthritis. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03058471&cond=Chikungunya&draw=1&rank=10 (Accessed June 28, 2017).Suche in Google Scholar
Simin, C.A.D. (2008). Treating inflammation by blocking interleukin-1 in a broad spectrum of disease. Growth (Lakeland) 23, 1–7.Suche in Google Scholar
Simoni, M.K., Jurado, K.A., Abrahams, V.M., Fikrig, E., and Guller, S. (2017). Zika virus infection of Hofbauer cells. Am. J. Reprod. Immunol. 77, e12613.10.1111/aji.12613Suche in Google Scholar PubMed PubMed Central
Smith, S.E.P., Li, J., Garbett, K., Mirnics, K., and Patterson, P.H. (2007). Maternal immune activation alters fetal brain development through interleukin-6. J. Neurosci. 27, 10695–10702.10.1523/JNEUROSCI.2178-07.2007Suche in Google Scholar PubMed PubMed Central
Souza, D.G., Fagundes, C.T., Sousa, L.P., Amaral, F.A., Souza, R.S., Souza, A.L., Kroon, E.G., Sachs, D., Cunha, F.Q., Bukin, E., et al. (2009). Essential role of platelet-activating factor receptor in the pathogenesis of Dengue virus infection. Proc. Natl. Acad. Sci. USA 106, 14138–14143.10.1073/pnas.0906467106Suche in Google Scholar PubMed PubMed Central
Srirangan, S. and Choy, E.H. (2010). The role of interleukin 6 in the pathophysiology of rheumatoid arthritis. Ther. Adv. Musculoskelet. Dis. 2, 247–256.10.1177/1759720X10378372Suche in Google Scholar PubMed PubMed Central
Stephen, E.L., Sammons, M.L., Pannier, W.L., Baron, S., Spertzel, R.O., and Levy, H.B. (1977). Effect of a nuclease-resistant derivative of polyriboinosinic-polyribocytidylic acid complex on yellow fever in rhesus monkeys (Macaca mulatta). J. Infect. Dis. 136, 122–126.10.1093/infdis/136.1.122Suche in Google Scholar PubMed
Tam, D.T.H., Ngoc, T.V., Tien, N.T.H., Kieu, N.T.T., Thuy, T.T.T., Thanh, L.T.C., Tam, C.T., Truong, N.T., Dung, N.T., Qui, P.T., et al. (2012). Effects of short-course oral corticosteroid therapy in early Dengue infection in Vietnamese patients: a randomized, placebo-controlled trial. Clin. Infect. Dis. 55, 1216–1224.10.1093/cid/cis655Suche in Google Scholar PubMed PubMed Central
Tappe, D., Nachtigall, S., Kapaun, A., Schnitzler, P., Günther, S., and Schmidt-Chanasit, J. (2015). Acute Zika virus infection after travel to Malaysian Borneo, September 2014. Emerg. Infect. Dis. 21, 911–913.10.3201/eid2105.141960Suche in Google Scholar PubMed PubMed Central
Tassaneetrithep, B., Burgess, T.H., Granelli-Piperno, A., Trumpfheller, C., Finke, J., Sun, W., Eller, M.A., Pattanapanyasat, K., Sarasombath, S., Birx, D.L., et al. (2003). DC-SIGN (CD209) mediates Dengue virus infection of human dendritic cells. J. Exp. Med. 197, 823–829.10.1084/jem.20021840Suche in Google Scholar PubMed PubMed Central
Teng, T.S., Kam, Y.W., Lee, B., Hapuarachchi, H.C., Wimal, A., Ng, L.C., and Ng, L.F.P. (2015). A systematic meta-analysis of immune signatures in patients with acute Chikungunya virus infection. J. Infect. Dis. 211, 1925–1935.10.1093/infdis/jiv049Suche in Google Scholar PubMed PubMed Central
Terzian, A.C.B., Schanoski, A.S., Mota, M.T. de O., da Silva, R.A., Estofolete, C.F., Colombo, T.E., Rahal, P., Hanley, K.A., Vasilakis, N., Kalil, J., et al. (2017). Viral load and cytokine response profile does not support antibody-dependent enhancement in Dengue-primed Zika virus–infected patients. Clin. Infect. Dis. 48, 324–331.10.1093/cid/cix558Suche in Google Scholar PubMed PubMed Central
Trugilho, M.R. de O., Hottz, E.D., Brunoro, G.V.F., Teixeira-Ferreira, A., Carvalho, P.C., Salazar, G.A., Zimmerman, G.A., Bozza, F.A., Bozza, P.T., and Perales, J. (2017). Platelet proteome reveals novel pathways of platelet activation and platelet-mediated immunoregulation in dengue. PLOS Pathog. 13, e1006385.10.1371/journal.ppat.1006385Suche in Google Scholar PubMed PubMed Central
Valadão, A.L.C., Aguiar, R.S., and de Arruda, L.B. (2016). Interplay between inflammation and cellular stress triggered by Flaviviridae viruses. Front. Microbiol. 7, 1233.10.3389/fmicb.2016.01233Suche in Google Scholar PubMed PubMed Central
Wauquier, N., Becquart, P., Nkoghe, D., Padilla, C., Ndjoyi-Mbiguino, A., and Leroy, E.M. (2011). The acute phase of Chikungunya virus infection in humans is associated with strong innate immunity and T CD8 cell activation. J. Infect. Dis. 204, 115–123.10.1093/infdis/jiq006Suche in Google Scholar PubMed PubMed Central
Wen, Z., Nguyen, H.N., Guo, Z., Lalli, M.A., Wang, X., Su, Y., Kim, N.S., Yoon, K.J., Shin, J., Zhang, C., et al. (2014). Synaptic dysregulation in a human iPS cell model of mental disorders. Nature 515, 414–418.10.1038/nature13716Suche in Google Scholar PubMed PubMed Central
WHO | Questions and Answers on Dengue Vaccines. (2016). WHO. [online] http://www.who.int/immunization/research/development/dengue_q_and_a/en/ (Accessed August 29, 2017).Suche in Google Scholar
Winter, P.M., Dung, N.M., Loan, H.T., Kneen, R., Wills, B., Thu, L.T., House, D., White, N.J., Farrar, J.J., Hart, C.A., et al. (2004). Proinflammatory cytokines and chemokines in humans with Japanese encephalitis. J. Infect. Dis. 190, 1618–1626.10.1086/423328Suche in Google Scholar PubMed
Woolf, N.K., Jaquish, D.V, and Koehrn, F.J. (2007). Transplacental murine cytomegalovirus infection in the brain of SCID mice. Virol. J. 4, 26.10.1186/1743-422X-4-26Suche in Google Scholar PubMed PubMed Central
Worm, M., Schadendorf, D., and Czarnetzki, B.M. (1993). Responsiveness to interferon treatment of human melanoma cells correlates to immunophenotype. Melanoma Res. 3, 29–33.10.1097/00008390-199304000-00005Suche in Google Scholar PubMed
Zambrano, H., Waggoner, J.J., Almeida, C., Rivera, L., Benjamin, J.Q., and Pinsky, B.A. (2016). Zika virus and Chikungunya virus coinfections: a series of three cases from a single center in Ecuador. Am. J. Trop. Med. Hyg. 95, 894–896.10.4269/ajtmh.16-0323Suche in Google Scholar PubMed PubMed Central
Zlokovic, B.V, Cho, T., Choi, H.B., Jantaratnotai, N., McLarnon, J.G., and Mitteregger, G. (2010). Neurodegeneration and the neurovascular unit. Nat. Med. 16, 1370–1371.10.1038/nm1210-1370Suche in Google Scholar PubMed
Zompi, S. and Harris, E. (2012). Animal models of Dengue virus infection. Viruses 4, 62–82.10.3390/v4010062Suche in Google Scholar PubMed PubMed Central
Zuiki, M., Chiyonobu, T., Yoshida, M., Maeda, H., Yamashita, S., Kidowaki, S., Hasegawa, T., Gotoh, H., Nomura, T., Ono, K., et al. (2017). Luteolin attenuates interleukin-6-mediated astrogliosis in human iPSC-derived neural aggregates: a candidate preventive substance for maternal immune activation-induced abnormalities. Neurosci. Lett. 653, 296–301.10.1016/j.neulet.2017.06.004Suche in Google Scholar PubMed
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Reviews
- Host target-based approaches against arboviral diseases
- The role of microRNAs in chronic respiratory disease: recent insights
- Research Articles/Short Communications
- Protein Structure and Function
- Selection of an Anticalin® against the membrane form of Hsp70 via bacterial surface display and its theranostic application in tumour models
- Cell Biology and Signaling
- TGF-β requires the activation of canonical and non-canonical signalling pathways to induce skeletal muscle atrophy
- Impact of protamine I on colon cancer proliferation, invasion, migration, diagnosis and prognosis
- Mechanism and dynamics of INPP5E transport into and inside the ciliary compartment
- Novel Techniques
- A novel design of HA-coated nanoparticles co-encapsulating plasmid METase and 5-Fu shows enhanced application in targeting gastric cancer stem cells
Artikel in diesem Heft
- Frontmatter
- Reviews
- Host target-based approaches against arboviral diseases
- The role of microRNAs in chronic respiratory disease: recent insights
- Research Articles/Short Communications
- Protein Structure and Function
- Selection of an Anticalin® against the membrane form of Hsp70 via bacterial surface display and its theranostic application in tumour models
- Cell Biology and Signaling
- TGF-β requires the activation of canonical and non-canonical signalling pathways to induce skeletal muscle atrophy
- Impact of protamine I on colon cancer proliferation, invasion, migration, diagnosis and prognosis
- Mechanism and dynamics of INPP5E transport into and inside the ciliary compartment
- Novel Techniques
- A novel design of HA-coated nanoparticles co-encapsulating plasmid METase and 5-Fu shows enhanced application in targeting gastric cancer stem cells