Abstract
The Ca2+-binding protein, S100A6, belongs to the S100 family. Binding of Ca2+ induces a conformational change, which causes an increase in the overall S100A6 hydrophobicity and allows it to interact with many targets. S100A6 is expressed in different normal tissues and in many tumors. Up to now it has been shown that S100A6 is involved in cell proliferation, cytoskeletal dynamics and tumorigenesis, and that it might have some extracellular functions. In this review, we summarize novel discoveries concerning S100A6 targets, its involvement in cellular signaling pathways, and presence in stem/progenitor cells, extracellular matrix and body fluids of diseased patients.
Acknowledgements
This work was supported by grants from the National Science Centre 2011/03/B/NZ1/00595 to A.F., 2012/05/B/NZ2/02944 to W.L., and by statutory funds from the Nencki Institute of Experimental Biology-PAS.
References
Acosta, S., Mayol, G., Rodríguez, E., Lavarino, C., de Preter, K., Kumps, C., Garcia, I., de Torres, C., and Mora, J. (2011). Identification of tumoral glial precursor cells in neuroblastoma. Cancer Lett. 312, 73–81.10.1016/j.canlet.2011.08.004Search in Google Scholar PubMed
Bartkowska, K., Swiatek, I., Aniszewska, A., Jurewicz, E., Turlejski, K., Filipek, A., and Djavadian, R.L. (2017). Stress-dependent changes in the CacyBP/SIP interacting protein S100A6 in the mouse brain. PLoS One 12, e0169760.10.1371/journal.pone.0169760Search in Google Scholar PubMed PubMed Central
Belt, E.J., Fijneman, R.J., van den Berg, E.G., Bril, H., Delis-van Diemen, P.M., Tijssen, M., van Essen, H.F., de Lange-de Klerk, E.S., Belien, J.A., Stockmann, H.B,, et al. (2011). Loss of lamin A/C expression in stage II and III colon cancer is associated with disease recurrence. Eur. J. Cancer 47, 1837–1845.10.1016/j.ejca.2011.04.025Search in Google Scholar PubMed
Bresnick, A.R., Weber, D.J., and Zimmer, D.B. (2015). S100 proteins in cancer. Nat. Rev. Cancer 15, 96–109.10.1038/nrc3893Search in Google Scholar PubMed PubMed Central
Cai, X.Y., Lu, L., Wang, Y.N., Jin, C., Zhang, R.Y., Zhang, Q., Chen, Q.J., and Shen, W.F. (2011). Association of increased S100B, S100A6 and S100P in serum levels with acute coronary syndrome and also with the severity of myocardial infarction in cardiac tissue of rat models with ischemia-reperfusion injury. Atherosclerosis 217, 536–542.10.1016/j.atherosclerosis.2011.05.023Search in Google Scholar PubMed
Capra, E., Beretta, R., Parazzi, V., Viganò, M., Lazzari, L., Baldi, A., and Giordano, R. (2012). Changes in the proteomic profile of adipose tissue-derived mesenchymal stem cells during passages. Proteome Sci. 10, 46.10.1186/1477-5956-10-46Search in Google Scholar PubMed PubMed Central
Chen, H., Xu, C., Jin, Q., and Liu, Z. (2014). S100 protein family in human cancer. Am. J. Cancer Res. 4, 89–115.Search in Google Scholar
Chen, X., Liu, X., Lang, H., Zhang, S., Luo, Y., and Zhang, J. (2015). S100 calcium-binding protein A6 promotes epithelial-mesenchymal transition through β-catenin in pancreatic cancer cell line. PLoS One 10, e0121319.10.1371/journal.pone.0121319Search in Google Scholar PubMed PubMed Central
Deloulme, J.C., Assard, N., Mbele, G.O., Mangin, C., Kuwano, R., and Baudier, J. (2000). S100A6 and S100A11 are specific targets of the calcium- and zinc-binding S100B protein in vivo. J. Biol. Chem. 275, 35302–35310.10.1074/jbc.M003943200Search in Google Scholar PubMed
Donato, R., Cannon, B.R., Sorci, G., Riuzzi, F., Hsu, K., Weber, D.J., and Geczy, C.L. (2013). Functions of S100 proteins. Curr. Mol. Med. 13, 24–57.10.2174/156652413804486214Search in Google Scholar
Duan, L., Wu, R., Zou, Z., Wang, H., Ye, L., Li, H., Yuan, S., Li, X, Zha, H., Sun, H., et al. (2014). S100A6 stimulates proliferation and migration of colorectal carcinoma cells through activation of the MAPK pathways. Int. J. Oncol. 44, 781–790.10.3892/ijo.2013.2231Search in Google Scholar PubMed
Fernandez-Fernandez, M.R., Rutherford, T.J., and Fersht, A.R. (2008) Members of the S100 family bind p53 in two distinct ways. Protein Sci. 17, 1663–1670.10.1110/ps.035527.108Search in Google Scholar
Filipek, A., Heizmann, C.W., and Kuźnicki, J. (1990). Calcyclin is a calcium and zinc binding protein. FEBS Lett. 264, 263–266.10.1016/0014-5793(90)80263-ISearch in Google Scholar
Filipek, A., Michowski, W., and Kuznicki, J. (2008) Involvement of S100A6 (calcyclin) and its binding partners in intracellular signaling pathways. Adv. Enzyme Regul. 48, 225–239.10.1016/j.advenzreg.2007.11.001Search in Google Scholar PubMed
Fritz, G., Botelho, H.M., Morozova-Roche, L.A., and Gomes, C.M. (2010). Natural and amyloid self-assembly of S100 proteins: structural basis of functional diversity. FEBS J. 277, 4578–4590.10.1111/j.1742-4658.2010.07887.xSearch in Google Scholar PubMed
Góral, A., Bieganowski, P., Prus, W., Krzemień-Ojak Ł., Kądziołka, B., Fabczak, H., and Filipek, A. (2016). Calcyclin binding protein/Siah-1 interacting protein is a Hsp90 binding chaperone. PLoS One 11, e0156507.10.1371/journal.pone.0156507Search in Google Scholar PubMed PubMed Central
Graczyk, A., Słomnicki, L.P., and Leśniak, W. (2013). S100A6 competes with the TAZ2 domain of p300 for binding to p53 and attenuates p53 acetylation. J. Mol. Biol. 425, 3488–3494.10.1016/j.jmb.2013.06.007Search in Google Scholar PubMed
Graczyk, A. and Leśniak, W. (2014). S100A6 expression in keratinocytes and its impact on epidermal differentiation. Int. J. Biochem. Cell. Biol. 57, 135–141.10.1016/j.biocel.2014.10.007Search in Google Scholar PubMed
Gross, S.R., Sin, C.G., Barraclough, R., and Rudland, P.S. (2014). Joining S100 proteins and migration: for better or for worse, in sickness and in health. Cell. Mol. Life Sci. 71, 1551–1579.10.1007/s00018-013-1400-7Search in Google Scholar PubMed
Halawi, A., Abbas, O., and Mahalingam, M. (2014). S100 proteins and the skin: a review. J. Eur. Acad. Dermatol. Venereol. 28, 405–414.10.1111/jdv.12237Search in Google Scholar PubMed
Harris, M.A, Yang. H., Low, B.E., Mukherjee, J., Guha, A., Bronson, R.T., Shultz, L.D., Israel, M.A., and Yun, K. (2008). Cancer stem cells are enriched in the side population cells in a mouse model of glioma. Cancer Res. 68, 10051–10059.10.1158/0008-5472.CAN-08-0786Search in Google Scholar PubMed PubMed Central
Imbalzano, E., Mandraffino, G., Casciaro, M., Quartuccio, S., Saitta, A., and Gangemi, S. (2016). Pathophysiological mechanism and therapeutic role of S100 proteins in cardiac failure: a systematic review. Heart Fail. Rev. 21, 463–473.10.1007/s10741-016-9529-8Search in Google Scholar
Ismail, M.F., El Boghdady, N.A, Shabayek, M.I., Awida, H.A., and Abozeed, H. (2016). Evaluation and screening of mRNA S100A genes as serological biomarkers in different stages of bladder cancer in Egypt. Tumour Biol. 37, 4621–4631.10.1007/s13277-015-4264-7Search in Google Scholar
Ito, M. and Kizawa, K. (2001). Expression of calcium-binding S100 proteins A4 and A6 in regions of the epithelial sac associated with the onset of hair follicle regeneration. J. Invest. Dermatol. 116, 956–963.10.1046/j.0022-202x.2001.01369.xSearch in Google Scholar
Jeong, J.A., Hong, S.H., Gang, E.J., Ahn, C., Hwang, S.H., Yang, I.H, Han, H., and Kim H. (2005). Differential gene expression profiling of human umbilical cord blood-derived mesenchymal stem cells by DNA microarray. Stem Cells 23, 584–593.10.1634/stemcells.2004-0304Search in Google Scholar
Ji, Y.F., Hunag, H., Jiang, F., Ni, R.Z., and Xiao, M.B. (2014). S100 family signaling network and related proteins in pancreatic cancer. Int. J. Mol. Med. 33, 769–776.10.3892/ijmm.2014.1633Search in Google Scholar
Joo, J.H., Kim, J.W., Lee, Y, Yoon, S.Y., Kim, J.H., Paik, S.G., and Choe, I.S. (2003). Involvement of NF-κB in the regulation of S100A6 gene expression in human hepatoblastoma cell line HepG2. Biochem. Biophys. Res. Commun. 307, 274–280.10.1016/S0006-291X(03)01199-9Search in Google Scholar
Jurewicz, E., Kasacka, I., Bankowski, E., and Filipek, A. (2014a). S100A6 and its extracellular targets in Wharton’s jelly of healthy and preeclamptic patients. Placenta 35, 386–391.10.1016/j.placenta.2014.03.017Search in Google Scholar PubMed
Jurewicz, E., Góral, A., and Filipek, A. (2014b). S100A6 is secreted from Wharton’s jelly mesenchymal stem cells and interacts with integrin β1. Int. J. Biochem. Cell Biol. 55, 298–303.10.1016/j.biocel.2014.09.015Search in Google Scholar PubMed
Kanojia, D., Zhou, W., Zhang, J., Jie, C., Lo, P.K., Wang, Q., and Chen, H. (2012). Proteomic profiling of cancer stem cells derived from primary tumors of HER2/Neu transgenic mice. Proteomics 12, 3407–3415.10.1002/pmic.201200103Search in Google Scholar PubMed
Kilańczyk, E., Filipek, S., Jastrzebska, B., and Filipek, A. (2009) CacyBP/SIP binds ERK1/2 and affects transcriptional activity of Elk-1. Biochem. Biophys. Res. Commun. 380, 54–59.10.1016/j.bbrc.2009.01.026Search in Google Scholar PubMed
Kilańczyk, E., Graczyk, A., Ostrowska, H., Kasacka, I., Leśniak, W., and Filipek A. (2012). S100A6 is transcriptionally regulated by β-catenin and interacts with a novel target, lamin A/C, in colorectal cancer cells. Cell Calcium 51, 470–477.10.1016/j.ceca.2012.04.005Search in Google Scholar
Klein, L.L., Freitag, B.C., Gibbs, R.S., Reddy, A.P., Nagalla, S.R., and Gravett, M.G. (2005). Detection of intra-amniotic infection in a rabbit model by proteomics-based amniotic fluid analysis. Am. J. Obst. Gynecol. 193, 1302–1306.10.1016/j.ajog.2005.06.017Search in Google Scholar
Kuźnicki, J. and Filipek, A. (1987). Purification and properties of a novel Ca2+-binding protein (10.5 kDa) from Ehrlich-ascites-tumour cells. Biochem. J. 247, 663–667.10.1042/bj2470663Search in Google Scholar
Kuźnicki, J., Kordowska, J., Puzianowska, M., and Woźniewicz, B.M. (1992). Calcyclin as a marker of human epithelial cells and fibroblasts. Exp. Cell Res. 200, 425–430.10.1016/0014-4827(92)90191-ASearch in Google Scholar
Landi, C., Bargagli, E., Bianchi, L., Gagliardi, A, Carleo, A., Bennett, D., Perari, M.G., Armini, A., Prasse, A., Rottoli, P., et al. (2013). Towards a functional proteomics approach to the comprehension of idiopathic pulmonary fibrosis, sarcoidosis, systemic sclerosis and pulmonary Langerhans cell histiocytosis. J. Proteomics 83, 60–75.10.1016/j.jprot.2013.03.006Search in Google Scholar PubMed
Leclerc, E. and Vetter, S.W. (2015). The role of S100 proteins and their receptor RAGE in pancreatic cancer. Biochim. Biophys. Acta 1852, 2706–2711.10.1016/j.bbadis.2015.09.022Search in Google Scholar PubMed PubMed Central
Leclerc, E., Fritz, G., Vetter, S.W., and Heizmann, C.W. (2009). Binding of S100 proteins to RAGE: an update. Biochim. Biophys. Acta 1793, 993–1007.10.1016/j.bbamcr.2008.11.016Search in Google Scholar PubMed
Lee, Y.S., Chen, P.W., Tsai, P.J., Su, S.H., and Liao, P.C. (2006). Proteomics analysis revealed changes in rat bronchoalveolar lavage fluid proteins associated with oil mist exposure. Proteomics 6, 2236–2250.10.1002/pmic.200500347Search in Google Scholar PubMed
Lerchenmüller, C., Heißenberg, J., Damilano, F., Bezzeridis, V.J., Krämer, I., Bochaton-Piallat, M.L., Hirschberg, K., Busch, M., Katus, H.A., Peppel, K., et al. (2016). S100A6 regulates endothelial cell cycle progression by attenuating antiproliferative signal transducers and activators of transcription 1 signaling. Arterioscler. Thromb. Vasc. Biol. 36, 1854–1867.10.1161/ATVBAHA.115.306415Search in Google Scholar PubMed PubMed Central
Leśniak, W. and Filipek, A. (1996). Ca2+-dependent interaction of calcyclin with membrane. Biochem. Biophys. Res. Commun. 220, 269–273.10.1006/bbrc.1996.0394Search in Google Scholar PubMed
Leśniak, W. and Graczyk-Jarzynka, A. (2015). The S100 proteins in epidermis: topology and function. Biochim. Biophys. Acta 1850, 2563–2572.10.1016/j.bbagen.2015.09.015Search in Google Scholar
Leśniak, W., Jezierska, A., and Kuźnicki, J. (2000). Upstream stimulatory factor is involved in the regulation of the human calcyclin (S100A6) gene. Biochim. Biophys. Acta 1517, 73–81.10.1016/S0167-4781(00)00259-1Search in Google Scholar
Leśniak, W., Słomnicki, Ł.P., and Kuźnicki, J. (2007). Epigenetic control of the S100A6 (calcyclin) gene expression. J. Invest. Dermatol 127, 2307–2314.10.1038/sj.jid.5700879Search in Google Scholar PubMed
Leśniak, W., Słomnicki, Ł.P., and Filipek, A. (2009). S100A6 – new facts and features. Biochem. Biophys. Res. Commun. 390, 1087–1092.10.1016/j.bbrc.2009.10.150Search in Google Scholar PubMed
Li, Z., Tang, M., Ling, B., Liu, S., Zheng, Y., Nie, C., Yuan, Z., Zhou, L., Guo, G., Tong, A., et al. (2014). Increased expression of S100A6 promotes cell proliferation and migration in human hepatocellular carcinoma. J. Mol. Med. (Berl) 92, 291–303.10.1007/s00109-013-1104-3Search in Google Scholar PubMed
Li, Y., Wagner, E.R., Yan, Z., Wang, Z., Luther, G., Jiang, W., Ye, J., Wei, Q., Wang, J., Zhao, L., et al. (2015). The calcium-binding protein S100A6 accelerates human osteosarcoma growth by promoting cell proliferation and inhibiting osteogenic differentiation. Cell. Physiol. Biochem. 37, 2375–2392.10.1159/000438591Search in Google Scholar PubMed
Li, A, Shi, D., Xu, B., Wang, J., Tang, Y.L., Xiao, W., Shen, G., Deng, W., and Zhao, C. (2017). S100A6 promotes cell proliferation in human nasopharyngeal carcinoma via the p38/MAPK signaling pathway. Mol. Carcinog. 56, 972–984.10.1002/mc.22563Search in Google Scholar PubMed
Liu, Z., Zhang, X., Chen, M., Cao, Q., and Huang, D. (2015). Effect of S100A6 over-expression on β-catenin in endometriosis. J. Obstet. Gynaecol. Res. 41, 1457–1462.10.1111/jog.12729Search in Google Scholar PubMed
Ludvigsen, M., Jacobsen, C., Maunsbach, A.B., and Honoré, B. (2009). Identification and characterization of novel ERC-55 interacting proteins: evidence for the existence of several ERC-55 splicing variants; including the cytosolic ERC-55-C. Proteomics 9, 5267–5287.10.1002/pmic.200900321Search in Google Scholar PubMed
Maletzki, C., Bodammer, P., Breitrück, A., and Kerkhoff C. (2012). S100 proteins as diagnostic and prognostic markers in colorectal and hepatocellular carcinoma. Hepat. Mon. 12, e7240.10.5812/hepatmon.7240Search in Google Scholar PubMed PubMed Central
Mignone, J.L., Roig-Lopez, J.L, Fedtsova, N., Schones, D.E., Manganas, L.N., Maletic-Savatic, M., Keyes, W.M., Mills, A.A., Gleiberman, A., Zhang, M.Q., et al. (2007). Neural potential of a stem cell population in the hair follicle. Cell Cycle 6, 2161–2170.10.4161/cc.6.17.4593Search in Google Scholar
Moravkova, P., Kohoutova, D., Rejchrt, S., Cyrany, J., and Bures, J. (2016). Role of S100 proteins in colorectal, carcinogenesis. Gastroenterol. Res. Pract. 2016, 2632703.10.1155/2016/2632703Search in Google Scholar
Moroz, O.V., Wilson, K.S., and Bronstein, I.B. (2011). The role of zinc in the S100 proteins: insights from the X-ray structures. Amino Acids 41, 761–772.10.1007/s00726-010-0540-4Search in Google Scholar
Nishi, M., Matsumoto, K., Kobayashi, M., Yanagita, K., Matsumoto, T., Nagashio, R., Ishii, D., Fujita, T., Sato, Y., and Iwamura, M. (2014). Serum expression of S100A6 is a potential detection marker in patients with urothelial carcinoma in the urinary bladder. Biomed. Res. 35, 351–356.10.2220/biomedres.35.351Search in Google Scholar
Ouji, Y., Yoshikawa, M., Nishiofuku, M., Ouji-Sageshima, N., Kubo, A., and Ishizaka, S. (2010). Effects of Wnt-10b on proliferation and differentiation of adult murine skin-derived CD34 and CD49f double-positive cells. J. Biosci. Bioeng. 110, 2217–2122.10.1016/j.jbiosc.2010.01.020Search in Google Scholar
Patgaonkar, M., Aranha, C., Bhonde, G., and Reddy, K.V. (2011). Identification and characterization of anti-microbial peptides from rabbit vaginal fluid. Vet. Immunol. Immunopathol. 139, 176–186.10.1016/j.vetimm.2010.10.012Search in Google Scholar
Persson, A.I., Petritsch, C., Swartling, F.J., Itsara, M., Sim, F.J., Auvergne, R., Goldenberg, D.D., Vandenberg, S.R., Nguyen, K.N., Yakovenko, S., et al. (2010). Non-stem cell origin for oligodendroglioma. Cancer Cell 18, 669–682.10.1016/j.ccr.2010.10.033Search in Google Scholar
Rehman, I., Cross, S.S., Catto, J.W., Leiblich, A., Mukherjee, A., Azzouzi, A.R., Leung, H.Y., and Hamdy, F.C. (2005). Promoter hyper-methylation of calcium binding proteins S100A6 and S100A2 in human prostate cancer. Prostate 65, 322–330.10.1002/pros.20302Search in Google Scholar
Rijsewijk, F., Schuermann, M., Wagenaar, E., Parren, P., Weigel, D., and Nusse, R. (1987). The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50, 649–657.10.1016/0092-8674(87)90038-9Search in Google Scholar
Sastry, M., Ketchem, R.R., Crescenzi, O., Weber, C., Lubienski, M.J., Hidaka, H., and Chazin, W.J. (1998). The three-dimensional structure of Ca2+-bound calcyclin: implications for Ca2+-signal transduction by S100 proteins. Structure 6, 223–231.10.1016/S0969-2126(98)00023-9Search in Google Scholar
Sbroggiò, M., Ferretti, R., Percivalle, E., Gutkowska, M., Zylicz, A., Michowski, W., Kuznick,i J., Accornero, F., Pacchioni, B., Lanfranchi, G., et al. (2008) The mammalian CHORD-containing protein melusin is a stress response protein interacting with Hsp90 and Sgt1. FEBS Lett. 582, 1788–1794.10.1016/j.febslet.2008.04.058Search in Google Scholar
Shimamoto, S., Takata, M., Tokuda, M., Oohira, F., Tokumitsu, H., and Kobayashi, R. (2008) Interactions of S100A2 and S100A6 with the tetratricopeptide repeat proteins, Hsp90/Hsp70-organizing protein and kinesin light chain. J. Biol. Chem. 283, 28246–28258.10.1074/jbc.M801473200Search in Google Scholar
Shimamoto, S., Kubota, Y., Tokumitsu, H., and Kobayashi, R. (2010). S100 proteins regulate the interaction of Hsp90 with cyclophilin 40 and FKBP52 through their tetratricopeptide repeats. FEBS Lett. 584, 1119–1125.10.1016/j.febslet.2010.02.055Search in Google Scholar
Shimamoto, S., Tsuchiya, M., Yamaguchi, F., Kubota, Y., Tokumitsu, H., and Kobayashi, R. (2014). Ca2+/S100 proteins inhibit the interaction of FKBP38 with Bcl-2 and Hsp90. Biochem. J. 458, 141–152.10.1042/BJ20130924Search in Google Scholar
Słomnicki, Ł.P., Nawrot, B., and Leśniak, W. (2009) S100A6 binds p53 and affects its activity. Int. J. Biochem. Cell Biol. 41, 784–790.10.1016/j.biocel.2008.08.007Search in Google Scholar
Spiechowicz, M., Zylicz, A., Bieganowski, P., Kuznicki, J., and Filipek, A. (2007). Hsp70 is a new target of Sgt1 – an interaction modulated by S100A6. Biochem. Biophys. Res. Commun. 357, 1148–1153.10.1016/j.bbrc.2007.04.073Search in Google Scholar
Stradal, T.B. and Gimona, M. (1999). Ca2+-dependent association of S100A6 (Calcyclin) with the plasma membrane and the nuclear envelope. J. Biol. Chem. 274, 31593–31596.10.1074/jbc.274.44.31593Search in Google Scholar
Takata, M., Shimamoto, S., Yamaguchi, F., Tokuda, M., Tokumitsu, H., and Kobayashi, R. (2010). Regulation of nuclear localization signal-importin α interaction by Ca2+/S100A6. FEBS Lett. 584, 4517–4523.10.1016/j.febslet.2010.09.052Search in Google Scholar
Taylor, G., Lehrer, M.S., Jensen, P.J., Sun, T.T., and Lavker, R.M. (2000). Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102, 451–461.10.1016/S0092-8674(00)00050-7Search in Google Scholar
van Dieck, J., Brandt, T., Teufel, D.P., Veprintsev, D.B., Joerger, A.C., and Fersht, A.R. (2010a). Molecular basis of S100 proteins interacting with the p53 homologs p63 and p73. Oncogene 29, 2024–2035.10.1038/onc.2009.490Search in Google Scholar PubMed
van Dieck, J., Lum, J.K., Teufel, D.P., and Fersht, A.R. (2010b). S100 proteins interact with the N-terminal domain of MDM2. FEBS Lett. 584, 3269–3274.10.1016/j.febslet.2010.06.024Search in Google Scholar PubMed
Wang, T., Liang, Y., Thakur, A., Zhang, S., Yang, T., Chen, T., Gao, L., Chen, M., and Ren, H. (2016). Diagnostic significance of S100A2 and S100A6 levels in sera of patients with non-small cell lung cancer. Tumour Biol. 37, 2299–2304.10.1007/s13277-015-4057-zSearch in Google Scholar PubMed
Wasik, U., Kadziolka, B., Kilanczyk, E., and Filipek, A. (2016) Influence of S100A6 on CacyBP/SIP phosphorylation and Elk-1 transcriptional activity in neuroblastoma NB2a cells. J. Cell Biochem. 117, 126–131.10.1002/jcb.25257Search in Google Scholar PubMed
Wei, B.R., Hoover, S,B,, Ross, M.M., Zhou, W., Meani, F., Edwards, J.B., Spehalski, E.I., Risinger, J.I., Alvord, W.G., Quiñones, O.A., et al. (2009). Serum S100A6 concentration predicts peritoneal tumor burden in mice with epithelial ovarian cancer and is associated with advanced stage in patients. PLoS One 4, e7670.10.1371/journal.pone.0007670Search in Google Scholar PubMed PubMed Central
Willis, N.D., Cox, T.R., Rahman-Casans, S.F., Smith, K., Przyborski, S.A., van den Brandt, P., van Engeland, M., Weijenberg, M., Wilson, R.G., de Bruine, A., et al. (2008). Lamin A/C is a risk biomarker in colorectal cancer. PLoS One 3, e2988.10.1371/journal.pone.0002988Search in Google Scholar PubMed PubMed Central
Yamada, J. and Jinno, S. (2014). S100A6 (calcyclin) is a novel marker of neural stem cells and astrocyte precursors in the subgranular zone of the adult mouse hippocampus. Hippocampus 24, 89–101.10.1002/hipo.22207Search in Google Scholar PubMed
Yamaguchi, F., Umeda, Y., Shimamoto, S., Tsuchiya, M., Tokumitsu, H., Tokuda, M., and Kobayashi, R. (2012). S100 proteins modulate protein phosphatase 5 function: a link between Ca2+ signal transduction and protein dephosphorylation. J. Biol. Chem. 287, 13787–13798.10.1074/jbc.M111.329771Search in Google Scholar PubMed PubMed Central
Yamaguchi, F., Yamamura, S., Shimamoto, S., Tokumitsu, H., Tokuda, M., and Kobayashi, R. (2014). Suramin is a novel activator of PP5 and biphasically modulates S100-activated PP5 activity. Appl. Biochem. Biotechnol. J172, 237–247.10.1007/s12010-013-0522-6Search in Google Scholar PubMed
Yammani, R.R. (2012). S100 proteins in cartilage: role in arthritis. Biochim. Biophys. Acta 1822, 600–606.10.1016/j.bbadis.2012.01.006Search in Google Scholar PubMed PubMed Central
Yang, Q., O’Hanlon, D., Heizmann, C.W., and Marks, A. (1999). Demonstration of heterodimer formation between S100B and S100A6 in the yeast two-hybrid system and human melanoma. Exp. Cell Res. 246, 501–509.10.1006/excr.1998.4314Search in Google Scholar PubMed
Yatime, L., Betzer, C., Jensen, R.K., Mortensen, S., Jensen, P.H., and Andersen, G.R. (2016). The structure of the RAGE:S100A6 complex reveals a unique mode of homodimerization for S100 proteins. Structure 24, 2043–2052.10.1016/j.str.2016.09.011Search in Google Scholar PubMed
Zackular, J.P., Chazin, W.J., and Skaar, E.P. (2015). Nutritional immunity: S100 proteins at the host-pathogen interface. J. Biol. Chem. 290, 18991–18998.10.1074/jbc.R115.645085Search in Google Scholar PubMed PubMed Central
Zhang, S.P., Wu, Z.Z., Wu, Y.W., Su, S.B., and Tong J. (2010). [Mechanism study of adaptive response in high background radiation area of Yangjiang in China]. Zhonghua Yu Fang Yi Xue Za Zhi 44, 815–819.Search in Google Scholar
Zhang, J., Zhang, K., Jiang, X., and Zhang, J. (2014). S100A6 as a potential serum prognostic biomarker and therapeutic target in gastric cancer. Digest. Dis. Sci. 59, 2136–2144.10.1007/s10620-014-3137-zSearch in Google Scholar PubMed
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Reviews
- Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities
- Targeting and inactivation of bacterial toxins by human defensins
- S100A6 – focus on recent developments
- Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach
- Research Articles/Short Communications
- Protein Structure and Function
- I36T↑T mutation in South African subtype C (C-SA) HIV-1 protease significantly alters protease-drug interactions
- Cell Biology and Signaling
- Mutation of N-linked glycosylation in EpCAM affected cell adhesion in breast cancer cells
- Galanin suppresses proliferation of human U251 and T98G glioma cells via its subtype 1 receptor
- Role of sigma 1 receptor in high fat diet-induced peripheral neuropathy
- Proteolysis
- Tissue kallikrein-related peptidase 4 (KLK4), a novel biomarker in triple-negative breast cancer
Articles in the same Issue
- Frontmatter
- Reviews
- Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities
- Targeting and inactivation of bacterial toxins by human defensins
- S100A6 – focus on recent developments
- Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach
- Research Articles/Short Communications
- Protein Structure and Function
- I36T↑T mutation in South African subtype C (C-SA) HIV-1 protease significantly alters protease-drug interactions
- Cell Biology and Signaling
- Mutation of N-linked glycosylation in EpCAM affected cell adhesion in breast cancer cells
- Galanin suppresses proliferation of human U251 and T98G glioma cells via its subtype 1 receptor
- Role of sigma 1 receptor in high fat diet-induced peripheral neuropathy
- Proteolysis
- Tissue kallikrein-related peptidase 4 (KLK4), a novel biomarker in triple-negative breast cancer