Abstract
Kallikrein-related peptidase-3 (KLK3, known also as prostate-specific antigen, PSA) is highly expressed in the prostate. KLK3 possess antiangiogenic activity, which we have found to be related to its proteolytic activity. Thus, it may be possible to slow down the growth of prostatic tumors by enhancing this activity. We have developed peptides that enhance the proteolytic activity of KLK3. As these peptides are degraded in circulation and rapidly excreted, we have started to modify them and have succeeded in creating bioactive and more stable pseudopeptides. We have also identified small molecules stimulating the activity of KLK3, especially in synergy with peptides.
Acknowledgments
Our original studies reviewed in this paper have been supported by grants from the Helsinki University Central Hospital, the Finnish Cancer Foundation, the Academy of Finland, Sigrid Jusélius Foundation, Graduate School of Organic Chemistry and Chemical Biology, the Research Funds of the University of Helsinki, Finska Läkaresällskapet, Finnish Funding Agency for Technology and Innovation, Magnus Ehrnrooth Foundation, the Swedish Research Council and Biomedicum Helsinki Foundation.
References
Avgeris, M. and Scorilas, A. (2016). Kallikrein-related peptidases (KLKs) as emerging therapeutic targets: focus on prostate cancer and skin pathologies. Expert Opin. Ther. Targets 20, 801–818.10.1517/14728222.2016.1147560Search in Google Scholar PubMed
Denmeade, S.R., Sokoll, L.J., Chan, D.W., Khan, S.R., and Isaacs, J.T. (2001). Concentration of enzymatically active prostate-specific antigen (PSA) in the extracellular fluid of primary human prostate cancers and human prostate cancer xenograft models. Prostate 48, 1–6.10.1002/pros.1075Search in Google Scholar PubMed
Fortier, A.H., Nelson, B.J., Grella, D.K., and Holaday, J.W. (1999). Antiangiogenic activity of prostate-specific antigen. J. Natl. Cancer Inst. 91, 1635–1640.10.1093/jnci/91.19.1635Search in Google Scholar PubMed
Fortier, A.H., Holaday, J.W., Liang, H., Dey, C., Grella, D.K., Holland-Linn, J., Vu, H., Plum, S.M., and Nelson, B.J. (2003). Recombinant prostate specific antigen inhibits angiogenesis in vitro and in vivo. Prostate 56, 212–219.10.1002/pros.10256Search in Google Scholar PubMed
Goettig, P., Magdolen, V., and Brandstetter, H. (2010). Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs). Biochimie 92, 1546–1567.10.1016/j.biochi.2010.06.022Search in Google Scholar PubMed PubMed Central
Härkönen, H.H., Mattsson, J.M., Määttä, J.A., Stenman, U.H., Koistinen, H., Matero, S., Windshugel, B., Poso, A., and Lahtela-Kakkonen, M. (2011). The discovery of compounds that stimulate the activity of kallikrein-related peptidase 3 (KLK3). ChemMedChem 6, 2170–2178.10.1002/cmdc.201100349Search in Google Scholar PubMed
Koistinen, H., Närvänen, A., Pakkala, M., Hekim, C., Mattsson, J.M., Zhu, L., Laakkonen, P., and Stenman, U.H. (2008a). Development of peptides specifically modulating the activity of KLK2 and KLK3. Biol. Chem. 389, 633–642.10.1515/BC.2008.076Search in Google Scholar PubMed
Koistinen, H., Wohlfahrt, G., Mattsson, J.M., Wu, P., Lahdenperä, J., and Stenman, U.H. (2008b). Novel small molecule inhibitors for prostate-specific antigen. Prostate 68, 1143–1151.10.1002/pros.20773Search in Google Scholar PubMed
Koistinen, H. and Stenman, U.H. (2012). PSA (Prostate-Specific Antigen) and other Kallikrein-related peptidases in prostate cancer. In: Kallikrein-Related Peptidases, Vol. 2: Novel Cancer-Related Biomarkers, V. Magdolen, C.P. Sommerhoff, H. Fritz, and M. Schmitt, eds. (Berlin, Germany: De Gruyter), pp. 61–81.10.1515/9783110303667.61Search in Google Scholar
Koistinen, H., Mattsson, J., and Stenman, U.H. (2014). KLK-targeted therapies for prostate cancer. eJIFCC 25, 77–88.Search in Google Scholar
Kote-Jarai, Z., Amin Al Olama, A., Leongamornlert, D., Tymrakiewicz, M., Saunders, E., Guy, M., Giles, G.G., Severi, G., Southey, M., Hopper, J.L., et al. (2011). Identification of a novel prostate cancer susceptibility variant in the KLK3 gene transcript. Hum. Genet. 129, 687–694.10.1007/s00439-011-0981-1Search in Google Scholar PubMed PubMed Central
Lawrence, M.G., Lai, J., and Clements, J.A. (2010). Kallikreins on steroids: structure, function, and hormonal regulation of prostate-specific antigen and the extended kallikrein locus. Endocr. Rev. 31, 407–446.10.1210/er.2009-0034Search in Google Scholar PubMed
Li, D. (2015). Strategic approaches to optimizing peptide ADME properties. Am. Assoc. Pharm. Sci. J. 17, 134–143.10.1208/s12248-014-9687-3Search in Google Scholar
Lilja, H., Cronin, A.M., Dahlin, A., Manjer, J., Nilsson, P.M., Eastham, J.A., Bjartell, A.S., Scardino, P.T., Ulmert, D., and Vickers, A.J. (2011). Prediction of significant prostate cancer diagnosed 20 to 30 years later with a single measure of prostate-specific antigen at or before age 50. Cancer 117, 1210–1219.10.1002/cncr.25568Search in Google Scholar PubMed PubMed Central
Mason, S.D. and Joyce, J.A. (2011). Proteolytic networks in cancer. Trends Cell Biol. 21, 228–237.10.1016/j.tcb.2010.12.002Search in Google Scholar PubMed PubMed Central
Mattsson, J.M., Valmu, L., Laakkonen, P., Stenman, U.H., and Koistinen, H. (2008). Structural characterization and anti-angiogenic properties of prostate-specific antigen isoforms in seminal fluid. Prostate 68, 945–954.10.1002/pros.20751Search in Google Scholar PubMed
Mattsson, J.M., Närvänen, A., Stenman, U.H., and Koistinen, H. (2012). Peptides binding to prostate-specific antigen enhance its antiangiogenic activity. Prostate 72, 1588–1594.10.1002/pros.22512Search in Google Scholar PubMed
Mattsson, J.M., Ravela, S., Hekim, C., Jonsson, M., Malm, J., Närvänen, A., Stenman, U.H., and Koistinen, H. (2014). Proteolytic activity of prostate-specific antigen (PSA) towards protein substrates and effect of peptides stimulating PSA activity. PLoS One 9, e107819.10.1371/journal.pone.0107819Search in Google Scholar PubMed PubMed Central
Meinander, K., Weisell, J., Pakkala, M., Tadd, A.C., Hekim, C., Kallionpää, R., Widell, K., Stenman, U., Koistinen, H., Närvänen, A., et al. (2013). Pseudopeptides with a centrally positioned alkene-based disulphide bridge mimetic stimulate kallikrein-related peptidase 3 activity. Med. Chem. Commun. 4, 549.10.1039/C3MD20292ESearch in Google Scholar
Meinander, K., Pakkala, M., Weisell, J., Stenman, U., Koistinen, H., Närvänen, A., and Wallén, E.A.A. (2014). Replacement of the disulfide bridge in a KLK3-stimulating peptide using orthogonally protected building blocks. ACS Med. Chem. Lett. 5, 162–165.10.1021/ml400419gSearch in Google Scholar PubMed PubMed Central
Ménez, R., Michel, S., Mueller, B.H., Bossus, M. Ducancel, F., Jolivet-Reynaud, C., and Stura, E.A. (2008). Crystal Structure of a ternary complex between human prostate-specific antigen, its substrate acyl intermediate and an activating antibody. J. Mol. Biol. 376, 1021–1033.10.1016/j.jmb.2007.11.052Search in Google Scholar PubMed
Moroz, E., Matoori, S., and Leroux, J.C. (2016). Oral delivery of macromolecular drugs: where we are after almost 100 years of attempts. Adv. Drug Deliv. Rev. 101, 108–121.10.1016/j.addr.2016.01.010Search in Google Scholar PubMed
Niu, Y., Yeh, S., Miyamoto, H., Li, G., Altuwaijri, S., Yuan, J., Han, R., Ma, T., Kuo, H.C., and Chang, C. (2008). Tissue prostate-specific antigen facilitates refractory prostate tumor progression via enhancing ARA70-regulated androgen receptor transactivation. Cancer Res. 68, 7110–7119.10.1158/0008-5472.CAN-07-6507Search in Google Scholar
Pakkala, M., Jylhäsalmi, A., Wu, P., Leinonen, J., Stenman, U.H., Santa, H., Vepsäläinen, J., Peräkylä, M., and Närvänen, A. (2004). Conformational and biochemical analysis of the cyclic peptides which modulate serine protease activity. J. Pept. Sci. 10, 439–447.10.1002/psc.557Search in Google Scholar
Pakkala, M., Hekim, C., Soininen, P., Leinonen, J., Koistinen, H., Weisell, J., Stenman, U.H., Vepsäläinen, J., and Närvänen, A. (2007). Activity and stability of human kallikrein-2-specific linear and cyclic peptide inhibitors. J. Pept. Sci. 13, 348–353.10.1002/psc.849Search in Google Scholar
Pakkala, M., Weisell, J., Hekim, C., Vepsäläinen, J., Wallen, E.A., Stenman, U.H., Koistinen, H., and Närvänen, A. (2010). Mimetics of the disulfide bridge between the N- and C-terminal cysteines of the KLK3-stimulating peptide B-2. Amino Acids 39, 233–242.10.1007/s00726-009-0433-6Search in Google Scholar
Papadopoulos, I., Sivridis, E., Giatromanolaki, A., and Koukourakis, M.I. (2001). Tumor angiogenesis is associated with MUC1 overexpression and loss of prostate-specific antigen expression in prostate cancer. Clin. Cancer Res. 7, 1533–1538.Search in Google Scholar
Rozek, A., Powers, J.P., Friedrich, C.L., and Hancock, R.E. (2003). Structure-based design of an indolicidin peptide analogue with increased protease stability. Biochemistry 42, 14130–14138.10.1021/bi035643gSearch in Google Scholar
Salman, J.W., Schoots, I.G., Carlsson, S.V., Jenster, G., and Roobol, M.J. (2015). Prostate-specific antigen as a tumor marker in prostate cancer: biochemical and clinical aspects. Adv. Exp. Med. Biol. 867, 93–114.10.1007/978-94-017-7215-0_7Search in Google Scholar
Stege, R., Grande, M., Carlstrom, K., Tribukait, B., and Pousette, A. (2000). Prognostic significance of tissue prostate-specific antigen in endocrine-treated prostate carcinomas. Clin. Cancer Res. 6, 160–165.Search in Google Scholar
Stenman, U.H., Hakama, M., Knekt, P., Aromaa, A., Teppo, L., and Leinonen, J. (1994). Serum concentrations of prostate specific antigen and its complex with α1-antichymotrypsin before diagnosis of prostate cancer. Lancet 344, 1594–1598.10.1016/S0140-6736(94)90405-7Search in Google Scholar
Tadd, A.C., Meinander, K., Luthman, K., and Wallén, E.A. (2011). Synthesis of orthogonally protected disulfide bridge mimetics. J. Org. Chem. 76, 673–675.10.1021/jo1018427Search in Google Scholar PubMed
Terrett, N. (2013). Drugs in middle space. Med. Chem. Commun. 4, 474–475.10.1039/C2MD90062ASearch in Google Scholar
Thorek, D.L., Evans, M.J., Carlsson, S.V., Ulmert, D., and Lilja, H. (2013). Prostate-specific kallikrein-related peptidases and their relation to prostate cancer biology and detection. Established relevance and emerging roles. Thromb. Haemost. 110, 484–492.10.1160/TH13-04-0275Search in Google Scholar PubMed PubMed Central
Williams, S.A., Jelinek, C.A., Litvinov, I., Cotter, R.J., Isaacs, J.T., and Denmeade, S.R. (2011). Enzymatically active prostate-specific antigen promotes growth of human prostate cancers. Prostate 71, 1595–1607.10.1002/pros.21375Search in Google Scholar PubMed PubMed Central
Wu, P., Leinonen, J., Koivunen, E., Lankinen, H., and Stenman, U.H. (2000). Identification of novel prostate-specific antigen-binding peptides modulating its enzyme activity. Eur. J. Biochem. 267, 6212–6220.10.1046/j.1432-1327.2000.01696.xSearch in Google Scholar PubMed
Ylikangas, H., Mattsson, J.M., Stenman, U.H., Koistinen, H., Poso, A., and Lahtela-Kakkonen, M. (2016). Virtual screening of small drug-like compounds stimulating the enzymatic activity of kallikrein-related peptidase 3 (KLK3). ChemmedChem, in press.10.1002/cmdc.201600181Search in Google Scholar PubMed
Zhang, Z., Liu, M., Li, B., Wang, Y., Yue, J., Liang, L., and Sun, J. (2013). Exploring the mechanism of a regulatory SNP of KLK3 by molecular dynamics simulation. J. Biomol. Struct. Dyn. 31, 426–40.10.1080/07391102.2012.703067Search in Google Scholar PubMed
Zhu, L., Koistinen, H., Wu, P., Närvänen, A., Schallmeiner, E., Fredriksson, S., Landegren, U., and Stenman, U.H. (2006). A sensitive proximity ligation assay for active PSA. Biol. Chem. 387, 769–772.10.1515/BC.2006.096Search in Google Scholar PubMed
©2016 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Guest Editorial
- Highlight: remodelling the KLK landscape down under
- HIGHLIGHT: 6TH INTERNATIONAL SYMPOSIUM ON KALLIKREINS AND KALLIKREIN-RELATED PEPTIDASES
- Kallikrein(K1)-kinin-kininase (ACE) and end-organ damage in ischemia and diabetes: therapeutic implications
- Mechanistic insight from murine models of Netherton syndrome
- Development of molecules stimulating the activity of KLK3 – an update
- Exploring the active site binding specificity of kallikrein-related peptidase 5 (KLK5) guides the design of new peptide substrates and inhibitors
- Structural basis for the Zn2+ inhibition of the zymogen-like kallikrein-related peptidase 10
- Clinical relevance of kallikrein-related peptidase 6 (KLK6) and 8 (KLK8) mRNA expression in advanced serous ovarian cancer
- Kallikrein-related peptidase 6 exacerbates disease in an autoimmune model of multiple sclerosis
- A viable mouse model for Netherton syndrome based on mosaic inactivation of the Spink5 gene
- Therapeutic modulation of tissue kallikrein expression
- In vitro evidence that KLK14 regulates the components of the HGF/Met axis, pro-HGF and HGF-activator inhibitor 1A and 1B
- A computational analysis of the genetic and transcript diversity at the kallikrein locus
- Reviews
- Lymphocyte signaling and activation by the CARMA1-BCL10-MALT1 signalosome
- The power, pitfalls and potential of the nanodisc system for NMR-based studies
- Research Articles/Short Communications
- Cell Biology and Signaling
- Synergistic induction of cardiomyocyte differentiation from human bone marrow mesenchymal stem cells by interleukin 1β and 5-azacytidine
Articles in the same Issue
- Frontmatter
- Guest Editorial
- Highlight: remodelling the KLK landscape down under
- HIGHLIGHT: 6TH INTERNATIONAL SYMPOSIUM ON KALLIKREINS AND KALLIKREIN-RELATED PEPTIDASES
- Kallikrein(K1)-kinin-kininase (ACE) and end-organ damage in ischemia and diabetes: therapeutic implications
- Mechanistic insight from murine models of Netherton syndrome
- Development of molecules stimulating the activity of KLK3 – an update
- Exploring the active site binding specificity of kallikrein-related peptidase 5 (KLK5) guides the design of new peptide substrates and inhibitors
- Structural basis for the Zn2+ inhibition of the zymogen-like kallikrein-related peptidase 10
- Clinical relevance of kallikrein-related peptidase 6 (KLK6) and 8 (KLK8) mRNA expression in advanced serous ovarian cancer
- Kallikrein-related peptidase 6 exacerbates disease in an autoimmune model of multiple sclerosis
- A viable mouse model for Netherton syndrome based on mosaic inactivation of the Spink5 gene
- Therapeutic modulation of tissue kallikrein expression
- In vitro evidence that KLK14 regulates the components of the HGF/Met axis, pro-HGF and HGF-activator inhibitor 1A and 1B
- A computational analysis of the genetic and transcript diversity at the kallikrein locus
- Reviews
- Lymphocyte signaling and activation by the CARMA1-BCL10-MALT1 signalosome
- The power, pitfalls and potential of the nanodisc system for NMR-based studies
- Research Articles/Short Communications
- Cell Biology and Signaling
- Synergistic induction of cardiomyocyte differentiation from human bone marrow mesenchymal stem cells by interleukin 1β and 5-azacytidine