Home Development of molecules stimulating the activity of KLK3 – an update
Article
Licensed
Unlicensed Requires Authentication

Development of molecules stimulating the activity of KLK3 – an update

  • Hannu Koistinen EMAIL logo , Erik Wallén , Henna Ylikangas , Kristian Meinander , Maija Lahtela-Kakkonen , Ale Närvänen and Ulf-Håkan Stenman
Published/Copyright: July 6, 2016

Abstract

Kallikrein-related peptidase-3 (KLK3, known also as prostate-specific antigen, PSA) is highly expressed in the prostate. KLK3 possess antiangiogenic activity, which we have found to be related to its proteolytic activity. Thus, it may be possible to slow down the growth of prostatic tumors by enhancing this activity. We have developed peptides that enhance the proteolytic activity of KLK3. As these peptides are degraded in circulation and rapidly excreted, we have started to modify them and have succeeded in creating bioactive and more stable pseudopeptides. We have also identified small molecules stimulating the activity of KLK3, especially in synergy with peptides.


Corresponding author: Dr. Hannu Koistinen, Department of Clinical Chemistry, Medicum, Faculty of Medicine, University of Helsinki and Helsinki University Central Hospital, P.O. Box 63 (Haartmaninkatu 8), 00014 University of Helsinki, Finland

Acknowledgments

Our original studies reviewed in this paper have been supported by grants from the Helsinki University Central Hospital, the Finnish Cancer Foundation, the Academy of Finland, Sigrid Jusélius Foundation, Graduate School of Organic Chemistry and Chemical Biology, the Research Funds of the University of Helsinki, Finska Läkaresällskapet, Finnish Funding Agency for Technology and Innovation, Magnus Ehrnrooth Foundation, the Swedish Research Council and Biomedicum Helsinki Foundation.

References

Avgeris, M. and Scorilas, A. (2016). Kallikrein-related peptidases (KLKs) as emerging therapeutic targets: focus on prostate cancer and skin pathologies. Expert Opin. Ther. Targets 20, 801–818.10.1517/14728222.2016.1147560Search in Google Scholar PubMed

Denmeade, S.R., Sokoll, L.J., Chan, D.W., Khan, S.R., and Isaacs, J.T. (2001). Concentration of enzymatically active prostate-specific antigen (PSA) in the extracellular fluid of primary human prostate cancers and human prostate cancer xenograft models. Prostate 48, 1–6.10.1002/pros.1075Search in Google Scholar PubMed

Fortier, A.H., Nelson, B.J., Grella, D.K., and Holaday, J.W. (1999). Antiangiogenic activity of prostate-specific antigen. J. Natl. Cancer Inst. 91, 1635–1640.10.1093/jnci/91.19.1635Search in Google Scholar PubMed

Fortier, A.H., Holaday, J.W., Liang, H., Dey, C., Grella, D.K., Holland-Linn, J., Vu, H., Plum, S.M., and Nelson, B.J. (2003). Recombinant prostate specific antigen inhibits angiogenesis in vitro and in vivo. Prostate 56, 212–219.10.1002/pros.10256Search in Google Scholar PubMed

Goettig, P., Magdolen, V., and Brandstetter, H. (2010). Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs). Biochimie 92, 1546–1567.10.1016/j.biochi.2010.06.022Search in Google Scholar PubMed PubMed Central

Härkönen, H.H., Mattsson, J.M., Määttä, J.A., Stenman, U.H., Koistinen, H., Matero, S., Windshugel, B., Poso, A., and Lahtela-Kakkonen, M. (2011). The discovery of compounds that stimulate the activity of kallikrein-related peptidase 3 (KLK3). ChemMedChem 6, 2170–2178.10.1002/cmdc.201100349Search in Google Scholar PubMed

Koistinen, H., Närvänen, A., Pakkala, M., Hekim, C., Mattsson, J.M., Zhu, L., Laakkonen, P., and Stenman, U.H. (2008a). Development of peptides specifically modulating the activity of KLK2 and KLK3. Biol. Chem. 389, 633–642.10.1515/BC.2008.076Search in Google Scholar PubMed

Koistinen, H., Wohlfahrt, G., Mattsson, J.M., Wu, P., Lahdenperä, J., and Stenman, U.H. (2008b). Novel small molecule inhibitors for prostate-specific antigen. Prostate 68, 1143–1151.10.1002/pros.20773Search in Google Scholar PubMed

Koistinen, H. and Stenman, U.H. (2012). PSA (Prostate-Specific Antigen) and other Kallikrein-related peptidases in prostate cancer. In: Kallikrein-Related Peptidases, Vol. 2: Novel Cancer-Related Biomarkers, V. Magdolen, C.P. Sommerhoff, H. Fritz, and M. Schmitt, eds. (Berlin, Germany: De Gruyter), pp. 61–81.10.1515/9783110303667.61Search in Google Scholar

Koistinen, H., Mattsson, J., and Stenman, U.H. (2014). KLK-targeted therapies for prostate cancer. eJIFCC 25, 77–88.Search in Google Scholar

Kote-Jarai, Z., Amin Al Olama, A., Leongamornlert, D., Tymrakiewicz, M., Saunders, E., Guy, M., Giles, G.G., Severi, G., Southey, M., Hopper, J.L., et al. (2011). Identification of a novel prostate cancer susceptibility variant in the KLK3 gene transcript. Hum. Genet. 129, 687–694.10.1007/s00439-011-0981-1Search in Google Scholar PubMed PubMed Central

Lawrence, M.G., Lai, J., and Clements, J.A. (2010). Kallikreins on steroids: structure, function, and hormonal regulation of prostate-specific antigen and the extended kallikrein locus. Endocr. Rev. 31, 407–446.10.1210/er.2009-0034Search in Google Scholar PubMed

Li, D. (2015). Strategic approaches to optimizing peptide ADME properties. Am. Assoc. Pharm. Sci. J. 17, 134–143.10.1208/s12248-014-9687-3Search in Google Scholar

Lilja, H., Cronin, A.M., Dahlin, A., Manjer, J., Nilsson, P.M., Eastham, J.A., Bjartell, A.S., Scardino, P.T., Ulmert, D., and Vickers, A.J. (2011). Prediction of significant prostate cancer diagnosed 20 to 30 years later with a single measure of prostate-specific antigen at or before age 50. Cancer 117, 1210–1219.10.1002/cncr.25568Search in Google Scholar PubMed PubMed Central

Mason, S.D. and Joyce, J.A. (2011). Proteolytic networks in cancer. Trends Cell Biol. 21, 228–237.10.1016/j.tcb.2010.12.002Search in Google Scholar PubMed PubMed Central

Mattsson, J.M., Valmu, L., Laakkonen, P., Stenman, U.H., and Koistinen, H. (2008). Structural characterization and anti-angiogenic properties of prostate-specific antigen isoforms in seminal fluid. Prostate 68, 945–954.10.1002/pros.20751Search in Google Scholar PubMed

Mattsson, J.M., Närvänen, A., Stenman, U.H., and Koistinen, H. (2012). Peptides binding to prostate-specific antigen enhance its antiangiogenic activity. Prostate 72, 1588–1594.10.1002/pros.22512Search in Google Scholar PubMed

Mattsson, J.M., Ravela, S., Hekim, C., Jonsson, M., Malm, J., Närvänen, A., Stenman, U.H., and Koistinen, H. (2014). Proteolytic activity of prostate-specific antigen (PSA) towards protein substrates and effect of peptides stimulating PSA activity. PLoS One 9, e107819.10.1371/journal.pone.0107819Search in Google Scholar PubMed PubMed Central

Meinander, K., Weisell, J., Pakkala, M., Tadd, A.C., Hekim, C., Kallionpää, R., Widell, K., Stenman, U., Koistinen, H., Närvänen, A., et al. (2013). Pseudopeptides with a centrally positioned alkene-based disulphide bridge mimetic stimulate kallikrein-related peptidase 3 activity. Med. Chem. Commun. 4, 549.10.1039/C3MD20292ESearch in Google Scholar

Meinander, K., Pakkala, M., Weisell, J., Stenman, U., Koistinen, H., Närvänen, A., and Wallén, E.A.A. (2014). Replacement of the disulfide bridge in a KLK3-stimulating peptide using orthogonally protected building blocks. ACS Med. Chem. Lett. 5, 162–165.10.1021/ml400419gSearch in Google Scholar PubMed PubMed Central

Ménez, R., Michel, S., Mueller, B.H., Bossus, M. Ducancel, F., Jolivet-Reynaud, C., and Stura, E.A. (2008). Crystal Structure of a ternary complex between human prostate-specific antigen, its substrate acyl intermediate and an activating antibody. J. Mol. Biol. 376, 1021–1033.10.1016/j.jmb.2007.11.052Search in Google Scholar PubMed

Moroz, E., Matoori, S., and Leroux, J.C. (2016). Oral delivery of macromolecular drugs: where we are after almost 100 years of attempts. Adv. Drug Deliv. Rev. 101, 108–121.10.1016/j.addr.2016.01.010Search in Google Scholar PubMed

Niu, Y., Yeh, S., Miyamoto, H., Li, G., Altuwaijri, S., Yuan, J., Han, R., Ma, T., Kuo, H.C., and Chang, C. (2008). Tissue prostate-specific antigen facilitates refractory prostate tumor progression via enhancing ARA70-regulated androgen receptor transactivation. Cancer Res. 68, 7110–7119.10.1158/0008-5472.CAN-07-6507Search in Google Scholar

Pakkala, M., Jylhäsalmi, A., Wu, P., Leinonen, J., Stenman, U.H., Santa, H., Vepsäläinen, J., Peräkylä, M., and Närvänen, A. (2004). Conformational and biochemical analysis of the cyclic peptides which modulate serine protease activity. J. Pept. Sci. 10, 439–447.10.1002/psc.557Search in Google Scholar

Pakkala, M., Hekim, C., Soininen, P., Leinonen, J., Koistinen, H., Weisell, J., Stenman, U.H., Vepsäläinen, J., and Närvänen, A. (2007). Activity and stability of human kallikrein-2-specific linear and cyclic peptide inhibitors. J. Pept. Sci. 13, 348–353.10.1002/psc.849Search in Google Scholar

Pakkala, M., Weisell, J., Hekim, C., Vepsäläinen, J., Wallen, E.A., Stenman, U.H., Koistinen, H., and Närvänen, A. (2010). Mimetics of the disulfide bridge between the N- and C-terminal cysteines of the KLK3-stimulating peptide B-2. Amino Acids 39, 233–242.10.1007/s00726-009-0433-6Search in Google Scholar

Papadopoulos, I., Sivridis, E., Giatromanolaki, A., and Koukourakis, M.I. (2001). Tumor angiogenesis is associated with MUC1 overexpression and loss of prostate-specific antigen expression in prostate cancer. Clin. Cancer Res. 7, 1533–1538.Search in Google Scholar

Rozek, A., Powers, J.P., Friedrich, C.L., and Hancock, R.E. (2003). Structure-based design of an indolicidin peptide analogue with increased protease stability. Biochemistry 42, 14130–14138.10.1021/bi035643gSearch in Google Scholar

Salman, J.W., Schoots, I.G., Carlsson, S.V., Jenster, G., and Roobol, M.J. (2015). Prostate-specific antigen as a tumor marker in prostate cancer: biochemical and clinical aspects. Adv. Exp. Med. Biol. 867, 93–114.10.1007/978-94-017-7215-0_7Search in Google Scholar

Stege, R., Grande, M., Carlstrom, K., Tribukait, B., and Pousette, A. (2000). Prognostic significance of tissue prostate-specific antigen in endocrine-treated prostate carcinomas. Clin. Cancer Res. 6, 160–165.Search in Google Scholar

Stenman, U.H., Hakama, M., Knekt, P., Aromaa, A., Teppo, L., and Leinonen, J. (1994). Serum concentrations of prostate specific antigen and its complex with α1-antichymotrypsin before diagnosis of prostate cancer. Lancet 344, 1594–1598.10.1016/S0140-6736(94)90405-7Search in Google Scholar

Tadd, A.C., Meinander, K., Luthman, K., and Wallén, E.A. (2011). Synthesis of orthogonally protected disulfide bridge mimetics. J. Org. Chem. 76, 673–675.10.1021/jo1018427Search in Google Scholar PubMed

Terrett, N. (2013). Drugs in middle space. Med. Chem. Commun. 4, 474–475.10.1039/C2MD90062ASearch in Google Scholar

Thorek, D.L., Evans, M.J., Carlsson, S.V., Ulmert, D., and Lilja, H. (2013). Prostate-specific kallikrein-related peptidases and their relation to prostate cancer biology and detection. Established relevance and emerging roles. Thromb. Haemost. 110, 484–492.10.1160/TH13-04-0275Search in Google Scholar PubMed PubMed Central

Williams, S.A., Jelinek, C.A., Litvinov, I., Cotter, R.J., Isaacs, J.T., and Denmeade, S.R. (2011). Enzymatically active prostate-specific antigen promotes growth of human prostate cancers. Prostate 71, 1595–1607.10.1002/pros.21375Search in Google Scholar PubMed PubMed Central

Wu, P., Leinonen, J., Koivunen, E., Lankinen, H., and Stenman, U.H. (2000). Identification of novel prostate-specific antigen-binding peptides modulating its enzyme activity. Eur. J. Biochem. 267, 6212–6220.10.1046/j.1432-1327.2000.01696.xSearch in Google Scholar PubMed

Ylikangas, H., Mattsson, J.M., Stenman, U.H., Koistinen, H., Poso, A., and Lahtela-Kakkonen, M. (2016). Virtual screening of small drug-like compounds stimulating the enzymatic activity of kallikrein-related peptidase 3 (KLK3). ChemmedChem, in press.10.1002/cmdc.201600181Search in Google Scholar PubMed

Zhang, Z., Liu, M., Li, B., Wang, Y., Yue, J., Liang, L., and Sun, J. (2013). Exploring the mechanism of a regulatory SNP of KLK3 by molecular dynamics simulation. J. Biomol. Struct. Dyn. 31, 426–40.10.1080/07391102.2012.703067Search in Google Scholar PubMed

Zhu, L., Koistinen, H., Wu, P., Närvänen, A., Schallmeiner, E., Fredriksson, S., Landegren, U., and Stenman, U.H. (2006). A sensitive proximity ligation assay for active PSA. Biol. Chem. 387, 769–772.10.1515/BC.2006.096Search in Google Scholar PubMed

Received: 2016-4-26
Accepted: 2016-6-30
Published Online: 2016-7-6
Published in Print: 2016-12-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Guest Editorial
  3. Highlight: remodelling the KLK landscape down under
  4. HIGHLIGHT: 6TH INTERNATIONAL SYMPOSIUM ON KALLIKREINS AND KALLIKREIN-RELATED PEPTIDASES
  5. Kallikrein(K1)-kinin-kininase (ACE) and end-organ damage in ischemia and diabetes: therapeutic implications
  6. Mechanistic insight from murine models of Netherton syndrome
  7. Development of molecules stimulating the activity of KLK3 – an update
  8. Exploring the active site binding specificity of kallikrein-related peptidase 5 (KLK5) guides the design of new peptide substrates and inhibitors
  9. Structural basis for the Zn2+ inhibition of the zymogen-like kallikrein-related peptidase 10
  10. Clinical relevance of kallikrein-related peptidase 6 (KLK6) and 8 (KLK8) mRNA expression in advanced serous ovarian cancer
  11. Kallikrein-related peptidase 6 exacerbates disease in an autoimmune model of multiple sclerosis
  12. A viable mouse model for Netherton syndrome based on mosaic inactivation of the Spink5 gene
  13. Therapeutic modulation of tissue kallikrein expression
  14. In vitro evidence that KLK14 regulates the components of the HGF/Met axis, pro-HGF and HGF-activator inhibitor 1A and 1B
  15. A computational analysis of the genetic and transcript diversity at the kallikrein locus
  16. Reviews
  17. Lymphocyte signaling and activation by the CARMA1-BCL10-MALT1 signalosome
  18. The power, pitfalls and potential of the nanodisc system for NMR-based studies
  19. Research Articles/Short Communications
  20. Cell Biology and Signaling
  21. Synergistic induction of cardiomyocyte differentiation from human bone marrow mesenchymal stem cells by interleukin 1β and 5-azacytidine
Downloaded on 11.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2016-0189/html
Scroll to top button