Home Photoactivated inhibition of cathepsin K in a 3D tumor model
Article
Licensed
Unlicensed Requires Authentication

Photoactivated inhibition of cathepsin K in a 3D tumor model

  • Mackenzie K. Herroon , Rajgopal Sharma , Erandi Rajagurubandara , Claudia Turro , Jeremy J. Kodanko EMAIL logo and Izabela Podgorski EMAIL logo
Published/Copyright: February 20, 2016

Abstract

Collagenolytic activity of cathepsin K is important for many physiological and pathological processes including osteoclast-mediated bone degradation, macrophage function and fibroblast-mediated matrix remodeling. Here, we report application of a light-activated inhibitor for controlling activity of cathepsin K in a 3D functional imaging assay. Using prostate carcinoma cell line engineered to overexpress cathepsin K, we demonstrate the utility of the proteolytic assay in living tumor spheroids for the evaluation and quantification of the inhibitor effects on cathepsin K-mediated collagen I degradation. Importantly, we also show that utilizing the ruthenium-caged version of a potent nitrile cathepsin K inhibitor (4), cis-[Ru(bpy)2(4)2](BF4)2 (5), offers significant advantage in terms of effective concentration of the inhibitor and especially its light-activated control in the 3D assay. Our results suggest that light activation provides a suitable, attractive approach for spatial and temporal control of proteolytic activity, which remains a critical, unmet need in treatment of human diseases, especially cancer.

Award Identifier / Grant number: EB 016072

Funding statement: We thank the National Institutes of Health (Grant EB 016072) and Wayne State University (Rumble Fellowship to R.S.) for their generous funding of this research.

Acknowledgments

We thank the National Institutes of Health (Grant EB 016072) and Wayne State University (Rumble Fellowship to R.S.) for their generous funding of this research.

References

Altmann, E., Aichholz, R., Betschart, C., Buhl, T., Green, J., Lattmann, R., and Missbach, M. (2006). Dipeptide nitrile inhibitors of cathepsin K. Bioorg. Med. Chem. Lett. 16, 2549–2554.10.1016/j.bmcl.2006.01.104Search in Google Scholar PubMed

Araya, R., Andino-Pavlovsky, V., Yuste, R., and Etchenique, R. (2013). Two-photon optical interrogation of individual dendritic spines with caged dopamine. ACS Chem. Neurosci. 4, 1163–1167.10.1021/cn4000692Search in Google Scholar PubMed PubMed Central

Berdowska, I. (2004). Cysteine proteases as disease markers. Clin. Chim. Acta 342, 41–69.10.1016/j.cccn.2003.12.016Search in Google Scholar PubMed

Boxer, M.B., Quinn, A.M., Shen, M., Jadhav, A., Leister, W., Simeonov, A., Auld, D.S., and Thomas, C.J. (2010). A highly potent and selective caspase 1 inhibitor that utilizes a key 3-cyanopropanoic acid moiety. Chem. Med. Chem. 5, 730–738.10.1002/cmdc.200900531Search in Google Scholar PubMed PubMed Central

Brieke, C., Rohrbach, F., Gottschalk, A., Mayer, G., and Heckel, A. (2012). Light-controlled tools. Angew. Chem., Int. Ed. 51, 8446–8476.10.1002/anie.201202134Search in Google Scholar PubMed

Brubaker, K.D., Vessella, R.L., True, L.D., Thomas, R., and Corey, E. (2003). Cathepsin K mRNA and protein expression in prostate cancer progression. J. Bone Miner. Res. 18, 222–230.10.1359/jbmr.2003.18.2.222Search in Google Scholar PubMed

Buhling, F., Gerber, A., Hackel, C., Kruger, S., Kohnlein, T., Bromme, D., Reinhold, D., Ansorge, S., and Welte, T. (1999). Expression of cathepsin K in lung epithelial cells. Am. J. Respir. Cell Mol. Biol. 20, 612–619.10.1165/ajrcmb.20.4.3405Search in Google Scholar PubMed

Buhling, F., Reisenauer, A., Gerber, A., Kruger, S., Weber, E., Bromme, D., Roessner, A., Ansorge, S., Welte, T., and Rocken, C. (2001). Cathepsin K – a marker of macrophage differentiation? J. Pathol. 195, 375–382.10.1002/path.959Search in Google Scholar PubMed

Ciesienski, K.L. and Franz, K.J. (2011). Keys for unlocking photolabile metal-containing cages. Angew. Chem. Int. Ed. 50, 814–824.10.1002/anie.201002542Search in Google Scholar PubMed

Desmarais, S., Black, W.C., Oballa, R., Lamontagne, S., Riendeau, D., Tawa, P., Duong, L.T., Pickarski, M., and Percival, M.D. (2008). Effect of cathepsin K inhibitor basicity on in vivo off-target activities. Mol. Pharmacol. 73, 147–156.10.1124/mol.107.039511Search in Google Scholar PubMed

Desmarais, S., Masse, F., and Percival, M.D. (2009). Pharmacological inhibitors to identify roles of cathepsin K in cell-based studies: a comparison of available tools. Biol. Chem. 390, 941–948.10.1515/BC.2009.092Search in Google Scholar PubMed

Duong, L.T., Wesolowski, G.A., Leung, P., Oballa, R., and Pickarski, M. (2014). Efficacy of a Cathepsin K inhibitor in a preclinical model for prevention and treatment of breast cancer bone metastasis. Mol. Cancer Ther. 13, 2898–2909.10.1158/1535-7163.MCT-14-0253Search in Google Scholar PubMed

Duong, L.T., Leung, A.T., and Langdahl, B. (2015). Cathepsin K inhibition: a new mechanism for the treatment of osteoporosis. Calcif. Tissue Int. 1–17.10.1007/s00223-015-0051-0Search in Google Scholar PubMed

Elliott, N.T. and Yuan, F. (2011). A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J. Pharm. Sci. 100, 59–74.10.1002/jps.22257Search in Google Scholar PubMed

Falgueyret, J.-P., Black, W.C., Cromlish, W., Desmarais, S., Lamontagne, S., Mellon, C., Riendeau, D., Rodan, S., Tawa, P., Wesolowski, G., et al. (2004). An activity-based probe for the determination of cysteine cathepsin protease activities in whole cells. Anal. Biochem. 335, 218–227.10.1016/j.ab.2004.09.005Search in Google Scholar PubMed

Falgueyret, J.-P., Desmarais, S., Oballa, R., Black, W.C., Cromlish, W., Khougaz, K., Lamontagne, S., Masse, F., Riendeau, D., Toulmond, S., et al. (2005). Lysosomotropism of basic cathepsin K inhibitors contributes to increased cellular potencies against off-target cathepsins and reduced functional selectivity. J. Med. Chem. 48, 7535–7543.10.1021/jm0504961Search in Google Scholar PubMed

Farrer, N.J. and Sadler, P.J. (2008). Photochemotherapy: targeted activation of metal anticancer complexes. Aust. J. Chem. 61, 669–674.10.1071/CH08088Search in Google Scholar

Farrer, N.J., Salassa, L., and Sadler, P.J. (2009) Photoactivated chemotherapy (PACT): the potential of excited-state d-block metals in medicine. Dalton Trans. 10690–10701.10.1039/b917753aSearch in Google Scholar PubMed PubMed Central

Filevich, O. and Etchenique, R. (2011). Ruthenium complexes for physiology research. Ruthenium: Properties. Prod. Appl. 269–291.Search in Google Scholar

Fleming, F.F., Yao, L., Ravikumar, P.C., Funk, L., and Shook, B.C. (2010). Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore. J. Med. Chem. 53, 7902–7917.10.1021/jm100762rSearch in Google Scholar PubMed PubMed Central

Frizler, M., Stirnberg, M., Sisay, M.T., and Guetschow, M. (2010). Development of nitrile-based peptidic inhibitors of cysteine cathepsins. Curr. Top. Med. Chem. 10, 294–322.10.2174/156802610790725452Search in Google Scholar PubMed

Garnero, P., Borel, O., Byrjalsen, I., Ferreras, M., Drake, F.H., McQueney, M.S., Foged, N.T., Delmas, P.D., and Delaisse, J.-M. (1998). The collagenolytic activity of cathepsin K is unique among mammalian proteinases. J. Biol. Chem. 273, 32347–32352.10.1074/jbc.273.48.32347Search in Google Scholar PubMed

Gauthier, J.Y., Chauret, N., Cromlish, W., Desmarais, S., Duong, L.T., Falgueyret, J.-P., Kimmel, D.B., Lamontagne, S., Leger, S., LeRiche, T., et al. (2008). The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg. Med. Chem. Lett. 18, 923–928.10.1016/j.bmcl.2007.12.047Search in Google Scholar PubMed

Gocheva, V. and Joyce, J.A. (2007). Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 6, 60–64.10.4161/cc.6.1.3669Search in Google Scholar PubMed

Greenspan, P.D., Clark, K.L., Tommasi, R.A., Cowen, S.D., McQuire, L.W., Farley, D.L., van Duzer, J.H., Goldberg, R.L., Zhou, H., Du, Z., et al. (2001). Identification of dipeptidyl nitriles as potent and selective inhibitors of cathepsin B through structure-based drug design. J. Med. Chem. 44, 4524–4534.10.1021/jm010206qSearch in Google Scholar PubMed

Haas, K.L. and Franz, K.J. (2009). Application of metal coordination chemistry to explore and manipulate cell biology. Chem. Rev. 109, 4921–4960.10.1021/cr900134aSearch in Google Scholar PubMed PubMed Central

Herroon, M.K., Rajagurubandara, E., Rudy, D.L., Chalasani, A., Hardaway, A.L., and Podgorski, I. (2013). Macrophage cathepsin K promotes prostate tumor progression in bone. Oncogene 32, 1580–1593.10.1038/onc.2012.166Search in Google Scholar PubMed PubMed Central

Husmann, K., Muff, R., Bolander, M.E., Sarkar, G., Born, W., and Fuchs, B. (2007). Cathepsins and osteosarcoma: expression analysis identifies cathepsin K as an indicator of metastasis. Mol. Carcinog. 47, 66–73.10.1002/mc.20362Search in Google Scholar PubMed

Jedeszko, C. and Sloane, B.F. (2004). Cysteine cathepsins in human cancer. Biol. Chem. 385, 1017–1027.10.1515/BC.2004.132Search in Google Scholar PubMed

Jedeszko, C., Sameni, M., Olive, M.B., Moin, K., and Sloane, B.F. (2008). Visualizing protease activity in living cells: from two dimensions to four dimensions. Curr. Protoc. Cell Biol. Chapter 4, Unit 4.20.10.1002/0471143030.cb0420s39Search in Google Scholar PubMed PubMed Central

Jensen, A.B., Wynne, C., Ramirez, G., He, W., Song, Y., Berd, Y., Wang, H., Mehta, A., and Lombardi, A. (2010). The cathepsin K inhibitor odanacatib suppresses bone resorption in women with breast cancer and established bone metastases: results of a 4-week, double-blind, randomized, controlled trial. Clin. Breast Cancer 10, 452–458.10.3816/CBC.2010.n.059Search in Google Scholar PubMed

Kaighn, M.E., Narayan, K.S., Ohnuki, Y., Lechner, J.F., and Jones, L.W. (1979). Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest. Urol. 17, 16–23.Search in Google Scholar

Klan, P., Solomek, T., Bochet, C.G., Blanc, A., Givens, R., Rubina, M., Popik, V., Kostikov, A., and Wirz, J. (2013). photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy. Chem. Rev. 113, 119–191.10.1021/cr300177kSearch in Google Scholar PubMed PubMed Central

Le Gall, C., Bellahcene, A., Bonnelye, E., Gasser, J.A., Castronovo, V., Green, J., Zimmermann, J., and Clezardin, P. (2007). A cathepsin K inhibitor reduces breast cancer-induced osteolysis and skeletal tumor burden. Cancer Res. 67, 9894–9902.10.1158/0008-5472.CAN-06-3940Search in Google Scholar PubMed

Lee, H.-M., Larson, D.R., and Lawrence, D.S. (2009). Illuminating the chemistry of life: design, synthesis, and applications of “caged” and related photoresponsive compounds. ACS Chem. Biol. 4, 409–427.10.1021/cb900036sSearch in Google Scholar PubMed PubMed Central

Leung, D., Abbenante, G., and Fairlie, D.P. (2000). Protease inhibitors: current status and future prospects. J. Med. Chem. 43, 305–341.10.1021/jm990412mSearch in Google Scholar PubMed

Li, C.S., Deschenes, D., Desmarais, S., Falgueyret, J.P., Gauthier, J.Y., Kimmel, D.B., Leger, S., Masse, F., McGrath, M.E., McKay, D.J., et al. (2006). Identification of a potent and selective non-basic cathepsin K inhibitor. Bioorg. Med. Chem. Lett. 16, 1985–1989.10.1016/j.bmcl.2005.12.071Search in Google Scholar PubMed

Littlewood-Evans, A.J., Bilbe, G., Bowler, W.B., Farley, D., Wlodarski, B., Kokubo, T., Inaoka, T., Sloane, J., Evans, D.B., and Gallagher, J.A. (1997). The osteoclast-associated protease cathepsin K is expressed in human breast carcinoma. Cancer Res. 57, 5386–5390.Search in Google Scholar

Liu, Y., Turner, D.B., Singh, T.N., Angeles-Boza, A.M., Chouai, A., Dunbar, K.R., and Turro, C. (2009). Ultrafast ligand exchange: detection of a pentacoordinate Ru(II) intermediate and product formation. J. Am. Chem. Soc. 131, 26–27.10.1021/ja806860wSearch in Google Scholar PubMed

Loeser, R., Schilling, K., Dimmig, E., and Guetschow, M. (2005). Interaction of papain-like cysteine proteases with dipeptide-derived nitriles. J. Med. Chem. 48, 7688–7707.10.1021/jm050686bSearch in Google Scholar PubMed

Lovitt, C.J., Shelper, T.B., and Avery, V.M. (2013). Miniaturized three-dimensional cancer model for drug evaluation. Assay Drug Dev. Technol. 11, 435–448.10.1089/adt.2012.483Search in Google Scholar PubMed

Lovitt, C.J., Shelper, T.B., and Avery, V.M. (2015). Evaluation of chemotherapeutics in a three-dimensional breast cancer model. J. Cancer Res. Clin. Oncol. 141, 951–959.10.1007/s00432-015-1950-1Search in Google Scholar PubMed

Mohamed, M.M. and Sloane, B.F. (2006). Cysteine cathepsins: multifunctional enzymes in cancer. Nat. Rev. Cancer 6, 764–775.10.1038/nrc1949Search in Google Scholar PubMed

Mullins, S.R., Sameni, M., Blum, G., Bogyo, M., Sloane, B.F., and Moin, K. (2012). Three-dimensional cultures modeling premalignant progression of human breast epithelial cells: role of cysteine cathepsins. Biol. Chem. 393, 1405–1416.10.1515/hsz-2012-0252Search in Google Scholar PubMed PubMed Central

Nikolenko, V., Yuste, R., Zayat, L., Baraldo, L.M., and Etchenique, R. (2005). Two-photon uncaging of neurochemicals using inorganic metal complexes. Chem. Commun., 1752–1754.10.1039/b418572bSearch in Google Scholar PubMed

Otto, H.-H. and Schirmeister, T. (1997). Cysteine proteases and their inhibitors. Chem. Rev. 97, 133–171.10.1021/cr950025uSearch in Google Scholar PubMed

Palmer, J.T., Bryant, C., Wang, D.-X., Davis, D.E., Setti, E.L., Rydzewski, R.M., Venkatraman, S., Tian, Z.-Q., Burrill, L.C., Mendonca, R.V., et al. (2005). Design and synthesis of tri-ring P3 benzamide-containing aminonitriles as potent, selective, orally effective inhibitors of cathepsin K. J. Med. Chem. 48, 7520–7534.10.1021/jm058198rSearch in Google Scholar PubMed

Podgorski, I. (2009). Future of anticathepsin K drugs: dual therapy for atherosclerosis and skeletal disease? Future Med. Chem. 1, 21–34.10.4155/fmc.09.4Search in Google Scholar PubMed PubMed Central

Podgorski, I., Linebaugh, B.E., Sameni, M., Jedeszko, C., Bhagat, S., Cher, M.L., and Sloane, B.F. (2005). Bone microenvironment modulates expression and activity of cathepsin B in prostate cancer. Neoplasia 7, 207–223.10.1593/neo.04349Search in Google Scholar PubMed PubMed Central

Podgorski, I., Linebaugh, B.E., Koblinski, J.E., Rudy, D.L., Herroon, M.K., Olive, M.B., and Sloane, B.F. (2009). Bone marrow-derived cathepsin K cleaves SPARC in bone metastasis. Am. J. Pathol. 175, 1255–1269.10.2353/ajpath.2009.080906Search in Google Scholar PubMed PubMed Central

Powers, J.C., Asgian, J.L., Ekici, O.D., and James, K.E. (2002). Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem. Rev. 102, 4639–4750.10.1021/cr010182vSearch in Google Scholar PubMed

Ramalho, S.D., Sharma, R., White, J.K., Aggarwal, N., Chalasani, A., Sameni, M., Moin, K., Vieira, P.C., Turro, C., Kodanko, J.J., et al. (2015). Imaging sites of inhibition of proteolysis in pathomimetic human breast cancer cultures by light-activated ruthenium compound. PLoS One. 10, e0142527.10.1371/journal.pone.0142527Search in Google Scholar PubMed PubMed Central

Respondek, T., Garner, R.N., Herroon, M.K., Podgorski, I., Turro, C., and Kodanko, J.J. (2011). Light activation of a cysteine protease inhibitor: caging of a peptidomimetic nitrile with RuII(bpy)2. J. Am. Chem. Soc. 133, 17164–17167.10.1021/ja208084sSearch in Google Scholar PubMed PubMed Central

Respondek, T., Sharma, R., Herroon, M.K., Garner, R.N., Knoll, J.D., Cueny, E., Turro, C., Podgorski, I., and Kodanko, J.J. (2014). inhibition of cathepsin activity in a cell-based assay by a light-activated ruthenium compound. Chem. Med. Chem. 9, 1306–1315.10.1002/cmdc.201400081Search in Google Scholar PubMed PubMed Central

Ruenger, T.M., Adami, S., Benhamou, C.-L., Czerwinski, E., Farrerons, J., Kendler, D.L., Mindeholm, L., Realdi, G., Roux, C., and Smith, V. (2012). Morphea-like skin reactions in patients treated with the cathepsin K inhibitor balicatib. J. Am. Acad. Dermat. 66, e89–e96.10.1016/j.jaad.2010.11.033Search in Google Scholar PubMed

Salierno, M., Fameli, C., and Etchenique, R. (2008). Caged amino acids for visible-light photodelivery. Eur. J. Inorg. Chem. 2008, 1125–1128.10.1002/ejic.200700963Search in Google Scholar

Sameni, M., Dosescu, J., Moin, K., and Sloane, B.F. (2003). Functional imaging of proteolysis: stromal and inflammatory cells increase tumor proteolysis. Mol. Imaging 2, 159–175.10.1162/153535003322556903Search in Google Scholar PubMed

Sgambellone, M.A., David, A., Garner, R.N., Dunbar, K.R., and Turro, C. (2013). Cellular toxicity induced by the photorelease of a caged bioactive molecule: design of a potential dual-action Ru(II) complex. J. Am. Chem. Soc. 135, 11274–11282.10.1021/ja4045604Search in Google Scholar PubMed

Sharma, R., Knoll, J.D., Martin, P.D., Podgorski, I., Turro, C., and Kodanko, J.J. (2014). Ruthenium tris(2-pyridylmethyl)amine as an effective photocaging group for nitriles. Inorg. Chem. 53, 3272–3274.10.1021/ic500299sSearch in Google Scholar PubMed PubMed Central

Shaw, K.R., Wrobel, C.N., and Brugge, J.S. (2004). Use of three-dimensional basement membrane cultures to model oncogene-induced changes in mammary epithelial morphogenesis. J. Mamm. Gland Biol. Neoplasia 9, 297–310.10.1007/s10911-004-1402-zSearch in Google Scholar PubMed PubMed Central

Sturge, J., Caley Matthew, P., and Waxman, J. (2011). Bone metastasis in prostate cancer: emerging therapeutic strategies. Nat. Rev. Clin. Onc. 8, 357–368.10.1038/nrclinonc.2011.67Search in Google Scholar PubMed

Turk, B. (2006). Targeting proteases: successes, failures and future prospects. Nat. Rev. Drug Discov. 5, 785–799.10.1038/nrd2092Search in Google Scholar PubMed

Vasiljeva, O., Reinheckel, T., Peters, C., Turk, D., Turk, V., and Turk, B. (2007). Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr. Pharm. Design 13, 387–403.10.2174/138161207780162962Search in Google Scholar PubMed

Westendorf, A.F., Woods, J.A., Korpis, K., Farrer, N.J., Salassa, L., Robinson, K., Appleyard, V., Murray, K., Gruenert, R., Thompson, A.M., et al. (2012). Trans,trans,trans-[PtIV(N3)2(OH)2(py)(NH3)]: a light-activated antitumor platinum complex that kills human cancer cells by an apoptosis-independent mechanism. Mol. Cancer Ther. 11, 1894–1904.10.1158/1535-7163.MCT-11-0959Search in Google Scholar PubMed PubMed Central

Yamashita, D.S., Smith, W.W., Zhao, B., Janson, C.A., Tomaszek, T.A., Bossard, M.J., Levy, M.A., Oh, H.-J., Carr, T.J., Thompson, S.K., et al. (1997). Structure and design of potent and selective cathepsin K inhibitors. J. Am. Chem. Soc. 119, 11351–11352.10.1021/ja972204uSearch in Google Scholar

Yang, X., Rode, D.L., Peterka, D.S., Yuste, R., and Rothman, S.M. (2012). Optical control of focal epilepsy in vivo with caged γ-aminobutyric acid. Ann. Neurol. 71, 68–75.10.1002/ana.22596Search in Google Scholar PubMed PubMed Central

Young, D.D. and Deiters, A. (2007). Photochemical control of biological processes. Org. Biomol. Chem. 5, 999–1005.10.1039/B616410MSearch in Google Scholar

Zayat, L., Filevich, O., Baraldo Luis, M., and Etchenique, R. (2013). Ruthenium polypyridyl phototriggers: from beginnings to perspectives. Phil. Trans. R. Soc. A 371, 20120330.10.1098/rsta.2012.0330Search in Google Scholar PubMed

Received: 2015-11-10
Accepted: 2016-2-16
Published Online: 2016-2-20
Published in Print: 2016-6-1

©2016 by De Gruyter

Downloaded on 14.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2015-0274/html
Scroll to top button