Home RAS and downstream RAF-MEK and PI3K-AKT signaling in neuronal development, function and dysfunction
Article
Licensed
Unlicensed Requires Authentication

RAS and downstream RAF-MEK and PI3K-AKT signaling in neuronal development, function and dysfunction

  • Jian Zhong

    Jian Zhong is an Assistant Professor of Neuroscience at the Brain and Mind Research Institute, Weill Medical College of Cornell University. He is also Director of the Molecular Regeneration and Neuroimaging Laboratory and Director of the Center for Pain and Sensory Recovery at the Burke-Cornell Medical Research Institute. Dr. Zhong received his Diploma (Dipl.-Chem.) and PhD degree (Dr. rer. nat.) from Ruhr University Bochum, Germany, and postdoctoral training at the California Institute of Technology as well as the Neuroscience Center at the University of North Carolina-Chapel Hill School of Medicine.

    EMAIL logo
Published/Copyright: January 12, 2016

Abstract

In postmitotic neurons, the activation of RAS family small GTPases regulates survival, growth and differentiation. Dysregulation of RAS or its major effector pathway, the cascade of RAF-, mitogen-activated and extracellular-signal regulated kinase kinases (MEK), and extracellular-signal regulated kinases (ERK) causes the RASopathies, a group of neurodevelopmental disorders whose pathogenic mechanisms are the subject of intense research. I here summarize the functions of RAS-RAF-MEK-ERK signaling in neurons in vivo, and discuss perspectives for harnessing this pathway to enable novel treatments for nervous system injury, the RASopathies, and possibly other neurological conditions.


Corresponding author: Jian Zhong, Burke Medical Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave., White Plains, NY 10605, USA, e-mail:

About the author

Jian Zhong

Jian Zhong is an Assistant Professor of Neuroscience at the Brain and Mind Research Institute, Weill Medical College of Cornell University. He is also Director of the Molecular Regeneration and Neuroimaging Laboratory and Director of the Center for Pain and Sensory Recovery at the Burke-Cornell Medical Research Institute. Dr. Zhong received his Diploma (Dipl.-Chem.) and PhD degree (Dr. rer. nat.) from Ruhr University Bochum, Germany, and postdoctoral training at the California Institute of Technology as well as the Neuroscience Center at the University of North Carolina-Chapel Hill School of Medicine.

Acknowledgments

Annette Markus is acknowledged for discussion and support. I sincerely apologize to all those colleagues whose important work is not cited due to space constraints. I gratefully acknowledge funding from the National Eye Institute (R01EY022409), the Craig H. Neilsen Foundation (296098), the Wings for Life Foundation (WFL-US-028/14), the New York State Spinal Cord Injury Research Trust Fund, and the Burke Foundation.

References

Aksamitiene, E., Kiyatkin, A., and Kholodenko, B.N. (2012). Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance. Biochem. Soc. Trans. 40, 139–146.10.1042/BST20110609Search in Google Scholar

Anastasaki, C., Estep, A.L., Marais, R., Rauen, K.A., and Patton, E.E. (2009). Kinase-activating and kinase-impaired cardio-facio-cutaneous syndrome alleles have activity during zebrafish development and are sensitive to small molecule inhibitors. Hum. Mol. Genet. 18, 2543–2554.10.1093/hmg/ddp186Search in Google Scholar

Anastasaki, C., Rauen, K.A., and Patton, E.E. (2012). Continual low-level MEK inhibition ameliorates cardio-facio-cutaneous phenotypes in zebrafish. Dis. Model. Mech. 5, 546–552.Search in Google Scholar

Anderton, R.S., Price, L.L., Turner, B.J., Meloni, B.P., Mitrpant, C., Mastaglia, F.L., Goh, C., Wilton, S.D., and Boulos, S. (2012). Co-regulation of survival of motor neuron and Bcl-xL expression: implications for neuroprotection in spinal muscular atrophy. Neuroscience 220, 228–236.10.1016/j.neuroscience.2012.06.042Search in Google Scholar

Atwal, J.K., Massie, B., Miller, F.D., and Kaplan, D.R. (2000). The TrkB-Shc site signals neuronal survival and local axon growth via MEK and P13-kinase. Neuron 27, 265–277.10.1016/S0896-6273(00)00035-0Search in Google Scholar

Bar-Sagi, D. and Feramisco, J.R. (1985). Microinjection of the ras oncogene protein into PC12 cells induces morphological differentiation. Cell 42, 841–848.10.1016/0092-8674(85)90280-6Search in Google Scholar

Borasio, G.D., John, J., Wittinghofer, A., Barde, Y.A., Sendtner, M., and Heumann, R. (1989). ras p21 protein promotes survival and fiber outgrowth of cultured embryonic neurons. Neuron 2, 1087–1096.10.1016/0896-6273(89)90233-XSearch in Google Scholar

Castellano, E. and Downward, J. (2011). RAS interaction with PI3K: more than just another effector pathway. Genes Cancer 2, 261–274.10.1177/1947601911408079Search in Google Scholar PubMed PubMed Central

Chakrabarty, K. and Heumann, R. (2008). Prospective of Ras signaling in stem cells. Biol. Chem. 389, 791–798.10.1515/BC.2008.104Search in Google Scholar PubMed

Chan, C.B., Liu, X., Pradoldej, S., Hao, C., An, J., Yepes, M., Luo, H.R., and Ye, K. (2011). Phosphoinositide 3-kinase enhancer regulates neuronal dendritogenesis and survival in neocortex. J. Neurosci. 31, 8083–8092.10.1523/JNEUROSCI.1129-11.2011Search in Google Scholar PubMed PubMed Central

Charette, N., Vandeputte, C., and Starkel, P. (2014). Ras in digestive oncology: from molecular biology to clinical implications. Curr. Opin. Oncol. 26, 454–461.10.1097/CCO.0000000000000088Search in Google Scholar PubMed

Chen, A.P., Ohno, M., Giese, K.P., Kuhn, R., Chen, R.L., and Silva, A.J. (2006a). Forebrain-specific knockout of B-raf kinase leads to deficits in hippocampal long-term potentiation, learning, and memory. J. Neurosci. Res. 83, 28–38.10.1002/jnr.20703Search in Google Scholar PubMed

Chen, C.L., Broom, D.C., Liu, Y., de Nooij, J.C., Li, Z., Cen, C., Samad, O.A., Jessell, T.M., Woolf, C.J., and Ma, Q. (2006b). Runx1 determines nociceptive sensory neuron phenotype and is required for thermal and neuropathic pain. Neuron 49, 365–377.10.1016/j.neuron.2005.10.036Search in Google Scholar PubMed

Cho, Y. and Cavalli, V. (2012). HDAC5 is a novel injury-regulated tubulin deacetylase controlling axon regeneration. EMBO J. 31, 3063–3078.10.1038/emboj.2012.160Search in Google Scholar PubMed PubMed Central

Cho, Y. and Cavalli, V. (2014). HDAC signaling in neuronal development and axon regeneration. Curr. Opin. Neurobiol. 27, 118–126.10.1016/j.conb.2014.03.008Search in Google Scholar PubMed PubMed Central

Cho, Y., Sloutsky, R., Naegle, K.M., and Cavalli, V. (2013). Injury-induced HDAC5 nuclear export is essential for axon regeneration. Cell 155, 894–908.10.1016/j.cell.2013.10.004Search in Google Scholar PubMed PubMed Central

Dahiya, S., Emnett, R.J., Haydon, D.H., Leonard, J.R., Phillips, J.J., Perry, A., and Gutmann, D.H. (2014). BRAF-V600E mutation in pediatric and adult glioblastoma. Neuro Oncol. 16, 318–319.10.1093/neuonc/not146Search in Google Scholar PubMed PubMed Central

Dankort, D., Curley, D.P., Cartlidge, R.A., Nelson, B., Karnezis, A.N., Damsky, W.E., Jr., You, M.J., DePinho, R.A., McMahon, M., and Bosenberg, M. (2009). Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat. Genet. 41, 544–552.10.1038/ng.356Search in Google Scholar PubMed PubMed Central

de la Monte, S.M., Ganju, N., Banerjee, K., Brown, N.V., Luong, T., and Wands, J.R. (2000). Partial rescue of ethanol-induced neuronal apoptosis by growth factor activation of phosphoinositol-3-kinase. Alcohol. Clin. Exp. Res. 24, 716–726.10.1111/j.1530-0277.2000.tb02044.xSearch in Google Scholar

Dudek, H., Datta, S.R., Franke, T.F., Birnbaum, M.J., Yao, R., Cooper, G.M., Segal, R.A., Kaplan, D.R., and Greenberg, M.E. (1997). Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275, 661–665.10.1126/science.275.5300.661Search in Google Scholar PubMed

Encinas, M., Rozen, E.J., Dolcet, X., Jain, S., Comella, J.X., Milbrandt, J., and Johnson, E.M., Jr. (2008). Analysis of Ret knockin mice reveals a critical role for IKKs, but not PI 3-K, in neurotrophic factor-induced survival of sympathetic neurons. Cell Death Differ. 15, 1510–1521.10.1038/cdd.2008.76Search in Google Scholar PubMed PubMed Central

Felderhoff-Mueser, U., Bittigau, P., Sifringer, M., Jarosz, B., Korobowicz, E., Mahler, L., Piening, T., Moysich, A., Grune, T., Thor, F., et al. (2004). Oxygen causes cell death in the developing brain. Neurobiol. Dis. 17, 273–282.10.1016/j.nbd.2004.07.019Search in Google Scholar

Finelli, M.J., Murphy, K.J., Chen, L., and Zou, H. (2013a). Differential phosphorylation of Smad1 integrates BMP and neurotrophin pathways through Erk/Dusp in axon development. Cell Rep. 3, 1592–1606.10.1016/j.celrep.2013.04.011Search in Google Scholar

Finelli, M.J., Wong, J.K., and Zou, H. (2013b). Epigenetic regulation of sensory axon regeneration after spinal cord injury. J. Neurosci. 33, 19664–19676.10.1523/JNEUROSCI.0589-13.2013Search in Google Scholar

Frye, R.E. (2015). RASopathies: a window into the molecular mechanisms underlying neurodevelopmental disorders. Dev. Med. Child Neurol. 57, 315–316.10.1111/dmcn.12626Search in Google Scholar

Galabova-Kovacs, G., Catalanotti, F., Matzen, D., Reyes, G.X., Zezula, J., Herbst, R., Silva, A., Walter, I., and Baccarini, M. (2008). Essential role of B-Raf in oligodendrocyte maturation and myelination during postnatal central nervous system development. J. Cell Biol. 180, 947–955.10.1083/jcb.200709069Search in Google Scholar

Gartner, U., Alpar, A., Reimann, F., Seeger, G., Heumann, R., and Arendt, T. (2004). Constitutive Ras activity induces hippocampal hypertrophy and remodeling of pyramidal neurons in synRas mice. J. Neurosci. Res. 77, 630–641.10.1002/jnr.20194Search in Google Scholar

Giehl, K. (2005). Oncogenic Ras in tumour progression and metastasis. Biol Chem 386, 193–205.10.1515/BC.2005.025Search in Google Scholar

Hanz, S., Perlson, E., Willis, D., Zheng, J.Q., Massarwa, R., Huerta, J.J., Koltzenburg, M., Kohler, M., van-Minnen, J., Twiss, J.L., et al. (2003). Axoplasmic importins enable retrograde injury signaling in lesioned nerve. Neuron 40, 1095–1104.10.1016/S0896-6273(03)00770-0Search in Google Scholar

Harel, N.Y. and Strittmatter, S.M. (2006). Can regenerating axons recapitulate developmental guidance during recovery from spinal cord injury? Nat. Rev. Neurosci. 7, 603–616.Search in Google Scholar

Heumann, R., Goemans, C., Bartsch, D., Lingenhohl, K., Waldmeier, P.C., Hengerer, B., Allegrini, P.R., Schellander, K., Wagner, E.F., Arendt, T., et al. (2000). Transgenic activation of Ras in neurons promotes hypertrophy and protects from lesion-induced degeneration. J. Cell Biol. 151, 1537–1548.10.1083/jcb.151.7.1537Search in Google Scholar PubMed PubMed Central

Huang, S., O’Donovan, K.J., Turner, E.E., Zhong, J., and Ginty, D.D. (2015). Extrinsic and intrinsic signals converge on the Runx1/CBFβ transcription factor for nonpeptidergic nociceptor maturation. eLife 4, e10874.10.7554/eLife.10874.021Search in Google Scholar

Hubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y., Ito, A., Nixon, A., Yoshida, M., Wang, X.F., and Yao, T.P. (2002). HDAC6 is a microtubule-associated deacetylase. Nature 417, 455–458.10.1038/417455aSearch in Google Scholar

Jessberger, S., Clark, R.E., Broadbent, N.J., Clemenson, G.D., Jr., Consiglio, A., Lie, D.C., Squire, L.R., and Gage, F.H. (2009). Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats. Learn Mem. 16, 147–154.10.1101/lm.1172609Search in Google Scholar

Ji, R.R., Gereau, R.W.t., Malcangio, M., and Strichartz, G.R. (2009). MAP kinase and pain. Brain Res. Rev. 60, 135–148.10.1016/j.brainresrev.2008.12.011Search in Google Scholar

Jindal, G.A., Goyal, Y., Burdine, R.D., Rauen, K.A., and Shvartsman, S.Y. (2015). RASopathies: unraveling mechanisms with animal models. Dis. Model Mech. 8, 769–782.10.1242/dmm.020339Search in Google Scholar

Johnson, L., Greenbaum, D., Cichowski, K., Mercer, K., Murphy, E., Schmitt, E., Bronson, R.T., Umanoff, H., Edelmann, W., Kucherlapati, R., et al. (1997). K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev. 11, 2468–2481.10.1101/gad.11.19.2468Search in Google Scholar

Kramer, I., Sigrist, M., de Nooij, J.C., Taniuchi, I., Jessell, T.M., and Arber, S. (2006). A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification. Neuron 49, 379–393.10.1016/j.neuron.2006.01.008Search in Google Scholar

Kuruvilla, R., Ye, H., and Ginty, D.D. (2000). Spatially and functionally distinct roles of the PI3-K effector pathway during NGF signaling in sympathetic neurons. Neuron 27, 499–512.10.1016/S0896-6273(00)00061-1Search in Google Scholar

Leinninger, G.M., Backus, C., Uhler, M.D., Lentz, S.I., and Feldman, E.L. (2004). Phosphatidylinositol 3-kinase and Akt effectors mediate insulin-like growth factor-I neuroprotection in dorsal root ganglia neurons. FASEB J. 18, 1544–1546.10.1096/fj.04-1581fjeSearch in Google Scholar PubMed

Levkovitz, Y., O’Donovan, K.J., and Baraban, J.M. (2001). Blockade of NGF-induced neurite outgrowth by a dominant-negative inhibitor of the egr family of transcription regulatory factors. J. Neurosci. 21, 45–52.10.1523/JNEUROSCI.21-01-00045.2001Search in Google Scholar

Liu, Y. and Ma, Q. (2011). Generation of somatic sensory neuron diversity and implications on sensory coding. Curr Opin Neurobiol 21, 52–60.10.1016/j.conb.2010.09.003Search in Google Scholar PubMed PubMed Central

Liu, K., Lu, Y., Lee, J.K., Samara, R., Willenberg, R., Sears-Kraxberger, I., Tedeschi, A., Park, K.K., Jin, D., Cai, B., et al. (2010). PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat. Neurosci. 13, 1075–1081.10.1038/nn.2603Search in Google Scholar

Luo, J.M., Cen, L.P., Zhang, X.M., Chiang, S.W., Huang, Y., Lin, D., Fan, Y.M., van Rooijen, N., Lam, D.S., Pang, C.P., et al. (2007). PI3K/akt, JAK/STAT and MEK/ERK pathway inhibition protects retinal ganglion cells via different mechanisms after optic nerve injury. Eur. J. Neurosci. 26, 828–842.10.1111/j.1460-9568.2007.05718.xSearch in Google Scholar

Makwana, M., Serchov, T., Hristova, M., Bohatschek, M., Gschwendtner, A., Kalla, R., Liu, Z., Heumann, R., and Raivich, G. (2009). Regulation and function of neuronal GTP-Ras in facial motor nerve regeneration. J. Neurochem. 108, 1453–1463.10.1111/j.1471-4159.2009.05890.xSearch in Google Scholar

Mar, F.M., Simoes, A.R., Rodrigo, I.S., and Sousa, M.M. (2015). Inhibitory injury signaling represses axon regeneration after dorsal root injury. Mol. Neurobiol., DOI: 10.1007/s12035-015-9397-6.10.1007/s12035-015-9397-6Search in Google Scholar

Markus, A., von Holst, A., Rohrer, H., and Heumann, R. (1997). NGF-mediated survival depends on p21ras in chick sympathetic neurons from the superior cervical but not from lumbosacral ganglia. Dev. Biol. 191, 306–310.10.1006/dbio.1997.8771Search in Google Scholar

Markus, A., Zhong, J., and Snider, W.D. (2002). Raf and akt mediate distinct aspects of sensory axon growth. Neuron 35, 65–76.10.1016/S0896-6273(02)00752-3Search in Google Scholar

Matsuoka, Y. and Yang, J. (2012). Selective inhibition of extracellular signal-regulated kinases 1/2 blocks nerve growth factor to brain-derived neurotrophic factor signaling and suppresses the development of and reverses already established pain behavior in rats. Neuroscience 206, 224–236.10.1016/j.neuroscience.2012.01.002Search in Google Scholar PubMed PubMed Central

Moore, D.L. and Goldberg, J.L. (2011). Multiple transcription factor families regulate axon growth and regeneration. Dev. Neurobiol. 71, 1186–1211.10.1002/dneu.20934Search in Google Scholar PubMed PubMed Central

Moriya, M., Inoue, S.I., Miyagawa-Tomita, S., Nakashima, Y., Oba, D., Niihori, T., Hashi, M., Ohnishi, H., Kure, S., Matsubara, Y., et al. (2015). Adult mice expressing a Braf Q241R mutation on an ICR/CD-1 background exhibit a cardio-facio-cutaneous syndrome phenotype. Hum. Mol. Genet. 24, 7349–7360.10.1093/hmg/ddv435Search in Google Scholar PubMed

Myers, A., Bernstein, J.A., Brennan, M.L., Curry, C., Esplin, E.D., Fisher, J., Homeyer, M., Manning, M.A., Muller, E.A., Niemi, A.K., et al. (2014). Perinatal features of the RASopathies: Noonan syndrome, cardiofaciocutaneous syndrome and Costello syndrome. Am. J. Med. Genet A 164A, 2814–2821.10.1002/ajmg.a.36737Search in Google Scholar PubMed

Newbern, J., Zhong, J., Wickramasinghe, R.S., Li, X., Wu, Y., Samuels, I., Cherosky, N., Karlo, J.C., O’Loughlin, B., Wikenheiser, J., et al. (2008). Mouse and human phenotypes indicate a critical conserved role for ERK2 signaling in neural crest development. Proc. Natl. Acad. Sci. USA 105, 17115–17120.10.1073/pnas.0805239105Search in Google Scholar

Nobes, C.D., Reppas, J.B., Markus, A., and Tolkovsky, A.M. (1996). Active p21Ras is sufficient for rescue of NGF-dependent rat sympathetic neurons. Neuroscience 70, 1067–1079.10.1016/0306-4522(95)00420-3Search in Google Scholar

Nussinov, R., Tsai, C.J., Chakrabarti, M., and Jang, H. (2016). A new view of ras isoforms in cancers. Cancer Res. 76, 18–23.10.1158/0008-5472.CAN-15-1536Search in Google Scholar PubMed PubMed Central

O’Brien, D.E., Alter, B.J., Satomoto, M., Morgan, C.D., Davidson, S., Vogt, S.K., Norman, M.E., Gereau, G.B., Demaro, J.A., 3rd, Landreth, G.E., et al. (2015). ERK2 alone drives inflammatory pain but cooperates with ERK1 in sensory neuron survival. J. Neurosci. 35, 9491–9507.10.1523/JNEUROSCI.4404-14.2015Search in Google Scholar PubMed PubMed Central

O’Donovan, K.J., Ma, K., Guo, H., Wang, C., Sun, F., Han, S.B., Kim, H., Wong, J.K., Charron, J., Zou, H., et al. (2014). B-RAF kinase drives developmental axon growth and promotes axon regeneration in the injured mature CNS. J. Exp. Med. 211, 801–814.10.1084/jem.20131780Search in Google Scholar PubMed PubMed Central

Orike, N., Middleton, G., Borthwick, E., Buchman, V., Cowen, T., and Davies, A.M. (2001). Role of PI 3-kinase, Akt and Bcl-2-related proteins in sustaining the survival of neurotrophic factor-independent adult sympathetic neurons. J. Cell. Biol. 154, 995–1005.10.1083/jcb.200101068Search in Google Scholar PubMed PubMed Central

Park, K.K., Liu, K., Hu, Y., Smith, P.D., Wang, C., Cai, B., Xu, B., Connolly, L., Kramvis, I., Sahin, M., et al. (2008). Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322, 963–966.10.1126/science.1161566Search in Google Scholar PubMed PubMed Central

Perlson, E., Hanz, S., Ben-Yaakov, K., Segal-Ruder, Y., Seger, R., and Fainzilber, M. (2005). Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve. Neuron 45, 715–726.10.1016/j.neuron.2005.01.023Search in Google Scholar PubMed

Pfeiffer, V., Gotz, R., Xiang, C., Camarero, G., Braun, A., Zhang, Y., Blum, R., Heinsen, H., Nieswandt, B., and Rapp, U.R. (2013). Ablation of BRaf impairs neuronal differentiation in the postnatal hippocampus and cerebellum. PLoS One 8, e58259.10.1371/journal.pone.0058259Search in Google Scholar PubMed PubMed Central

Pierchala, B.A., Ahrens, R.C., Paden, A.J., and Johnson, E.M., Jr. (2004). Nerve growth factor promotes the survival of sympathetic neurons through the cooperative function of the protein kinase C and phosphatidylinositol 3-kinase pathways. J. Biol. Chem. 279, 27986–27993.10.1074/jbc.M312237200Search in Google Scholar PubMed

Pucilowska, J., Puzerey, P.A., Karlo, J.C., Galan, R.F., and Landreth, G.E. (2012). Disrupted ERK signaling during cortical development leads to abnormal progenitor proliferation, neuronal and network excitability and behavior, modeling human neuro-cardio-facial-cutaneous and related syndromes. J. Neurosci. 32, 8663–8677.10.1523/JNEUROSCI.1107-12.2012Search in Google Scholar

Rauen, R.A. (2012). Cardiofaciocutaneous syndrome. In: GeneReviews® [Internet], R.A. Pagon, M.P. Adam, H.H. Ardinger, et al., eds. (Seattle, WA: University of Washington, Seattle), 1993-2016. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1186/.Search in Google Scholar

Rauen, K.A. (2013). The RASopathies. Annu. Rev. Genomics Hum. Genet. 14, 355–369.10.1146/annurev-genom-091212-153523Search in Google Scholar

Reichardt, L.F. (2006). Neurotrophin-regulated signalling pathways. Philos. Trans. R Soc. Lond B Biol. Sci. 361, 1545–1564.10.1098/rstb.2006.1894Search in Google Scholar

Rivieccio, M.A., Brochier, C., Willis, D.E., Walker, B.A., D’Annibale, M.A., McLaughlin, K., Siddiq, A., Kozikowski, A.P., Jaffrey, S.R., Twiss, J.L., et al. (2009). HDAC6 is a target for protection and regeneration following injury in the nervous system. Proc. Natl. Acad. Sci. USA 106, 19599–19604.10.1073/pnas.0907935106Search in Google Scholar

Roberts, A., Allanson, J., Jadico, S.K., Kavamura, M.I., Noonan, J., Opitz, J.M., Young, T., and Neri, G. (2006). The cardiofaciocutaneous syndrome. J. Med. Genet. 43, 833–842.10.1136/jmg.2006.042796Search in Google Scholar

Snider, W.D., Zhou, F.Q., Zhong, J., and Markus, A. (2002). Signaling the pathway to regeneration. Neuron 35, 13–16.10.1016/S0896-6273(02)00762-6Search in Google Scholar

Sun, F. and He, Z. (2010). Neuronal intrinsic barriers for axon regeneration in the adult CNS. Curr. Opin. Neurobiol. 20, 510–518.10.1016/j.conb.2010.03.013Search in Google Scholar PubMed PubMed Central

Tang, B.L. (2014). Class II HDACs and neuronal regeneration. J. Cell. Biochem. 115, 1225–1233.10.1002/jcb.24802Search in Google Scholar PubMed

Tapodi, A., Debreceni, B., Hanto, K., Bognar, Z., Wittmann, I., Gallyas, F., Jr., Varbiro, G., and Sumegi, B. (2005). Pivotal role of Akt activation in mitochondrial protection and cell survival by poly(ADP-ribose)polymerase-1 inhibition in oxidative stress. J. Biol. Chem. 280, 35767–35775.10.1074/jbc.M507075200Search in Google Scholar PubMed

Urosevic, J., Sauzeau, V., Soto-Montenegro, M.L., Reig, S., Desco, M., Wright, E.M., Canamero, M., Mulero, F., Ortega, S., Bustelo, X.R., et al. (2011). Constitutive activation of B-Raf in the mouse germ line provides a model for human cardio-facio-cutaneous syndrome. Proc. Natl. Acad. Sci. USA 108, 5015–5020.10.1073/pnas.1016933108Search in Google Scholar PubMed PubMed Central

Vegunta, S., Cotugno, R., Williamson, A., and Grebe, T.A. (2015). Chronic pain in Noonan syndrome: a previously unreported but common symptom. Am. J. Med. Genet A. 167, 2998–3005.10.1002/ajmg.a.37337Search in Google Scholar PubMed

Vithayathil, J., Pucilowska, J., Goodnough, L.H., Atit, R.P., and Landreth, G.E. (2015). Dentate gyrus development requires ERK activity to maintain progenitor population and MAPK pathway feedback regulation. J. Neurosci. 35, 6836–6848.10.1523/JNEUROSCI.4196-14.2015Search in Google Scholar PubMed PubMed Central

Wickramasinghe, S.R., Alvania, R.S., Ramanan, N., Wood, J.N., Mandai, K., and Ginty, D.D. (2008). Serum response factor mediates NGF-dependent target innervation by embryonic DRG sensory neurons. Neuron 58, 532–545.10.1016/j.neuron.2008.03.006Search in Google Scholar PubMed PubMed Central

Wiese, S., Pei, G., Karch, C., Troppmair, J., Holtmann, B., Rapp, U.R., and Sendtner, M. (2001). Specific function of B-Raf in mediating survival of embryonic motoneurons and sensory neurons. Nat. Neurosci. 4, 137–142.10.1038/83960Search in Google Scholar PubMed

Williams, K.A., Zhang, M., Xiang, S., Hu, C., Wu, J.Y., Zhang, S., Ryan, M., Cox, A.D., Der, C.J., Fang, B., et al. (2013). Extracellular signal-regulated kinase (ERK) phosphorylates histone deacetylase 6 (HDAC6) at serine 1035 to stimulate cell migration. J. Biol. Chem. 288, 33156–33170.10.1074/jbc.M113.472506Search in Google Scholar PubMed PubMed Central

Yoon, G., Rosenberg, J., Blaser, S., and Rauen, K.A. (2007). Neurological complications of cardio-facio-cutaneous syndrome. Dev. Med. Child. Neurol. 49, 894–899.10.1111/j.1469-8749.2007.00894.xSearch in Google Scholar PubMed

Zhang, X., Yuan, Z., Zhang, Y., Yong, S., Salas-Burgos, A., Koomen, J., Olashaw, N., Parsons, J.T., Yang, X.J., Dent, S.R., et al. (2007). HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol. Cell. 27, 197–213.10.1016/j.molcel.2007.05.033Search in Google Scholar PubMed PubMed Central

Zhao, Z.Q., Huo, F.Q., Jeffry, J., Hampton, L., Demehri, S., Kim, S., Liu, X.Y., Barry, D.M., Wan, L., Liu, Z.C., et al. (2013). Chronic itch development in sensory neurons requires BRAF signaling pathways. J. Clin. Invest. 123, 4769–4780.10.1172/JCI70528Search in Google Scholar PubMed PubMed Central

Zhong, J. (2015). RAFting the rapids of axon regeneration signaling. Neural. Regen. Res. 10, 341–343.10.4103/1673-5374.153670Search in Google Scholar PubMed PubMed Central

Zhong, J. and Zou, H. (2014). BMP signaling in axon regeneration. Curr Opin Neurobiol 27, 127–134.10.1016/j.conb.2014.03.009Search in Google Scholar PubMed PubMed Central

Zhong, J., Pevny, L., and Snider, W.D. (2006). “Runx”ing towards sensory differentiation. Neuron 49, 325–327.10.1016/j.neuron.2006.01.013Search in Google Scholar PubMed

Zhong, J., Li, X., McNamee, C., Chen, A.P., Baccarini, M., and Snider, W.D. (2007). Raf kinase signaling functions in sensory neuron differentiation and axon growth in vivo. Nat. Neurosci. 10, 598–607.10.1038/nn1898Search in Google Scholar PubMed

Zhou, Y., Pernet, V., Hauswirth, W.W., and Di Polo, A. (2005). Activation of the extracellular signal-regulated kinase 1/2 pathway by AAV gene transfer protects retinal ganglion cells in glaucoma. Mol. Ther. 12, 402–412.10.1016/j.ymthe.2005.04.004Search in Google Scholar PubMed

Received: 2015-9-24
Accepted: 2016-1-4
Published Online: 2016-1-12
Published in Print: 2016-3-1

©2016 by De Gruyter

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2015-0270/pdf?lang=en
Scroll to top button