Abstract
Fifteen years ago we discovered activity-dependent neuroprotective protein (ADNP), and showed that it is essential for brain formation/function. Our protein interaction studies identified ADNP as a member of the chromatin remodeling complex, SWI/SNF also associated with alternative splicing of tau and prediction of tauopathy. Recently, we have identified cytoplasmic ADNP interactions with the autophagy regulating microtubule-associated protein 1 light chain 3 (LC3) and with microtubule end-binding (EB) proteins. The ADNP-EB-binding SIP domain is shared with the ADNP snippet drug candidate, NAPVSIPQ termed NAP (davunetide). Thus, we identified a precise target for ADNP/NAP (davunetide) neuroprotection toward improved drug development.
Acknowledgments
Support was provided by the AMN Foundation, Montreal Circle of Friend, Joe and Grace Alter, the Adams family, the Lily and Avraham Gildor Chair for the Investigation of Growth Factors and The Dr. Diana and Zelman Elton (Elbaum) Laboratory for Molecular Neuroendocrinology, ISF and the Israeli Ministry for Science Technology and Space. Professor Gozes is a Humboldt Award Recipient and a fellow at the Hanse-Wissenschftenkolleg, Germany.
References
Arens, J., Duong, T.T., and Dehmelt, L. (2013). A morphometric screen identifies specific roles for microtubule-regulating genes in neuronal development of P19 stem cells. PLoS One 8, e79796.10.1371/journal.pone.0079796Search in Google Scholar
Bassan, M., Zamostiano, R., Davidson, A., Pinhasov, A., Giladi, E., Perl, O., Bassan, H., Blat, C., Gibney, G., Glazner, G., et al. (1999). Complete sequence of a novel protein containing a femtomolar-activity-dependent neuroprotective peptide. J. Neurochem. 72, 1283–1293.10.1046/j.1471-4159.1999.0721283.xSearch in Google Scholar
Ben-Ze’ev, A., Farmer, S.R., and Penman, S. (1979). Mechanisms of regulating tubulin synthesis in cultured mammalian cells. Cell 17, 319–325.10.1016/0092-8674(79)90157-0Search in Google Scholar
Brenneman, D.E. and Gozes, I. (1996). A femtomolar-acting neuroprotective peptide. J. Clin. Invest. 97, 2299–2307.10.1172/JCI118672Search in Google Scholar PubMed PubMed Central
Brenneman, D.E., Hauser, J., Neale, E., Rubinraut, S., Fridkin, M., Davidson, A., and Gozes, I. (1998). Activity-dependent neurotrophic factor: structure-activity relationships of femtomolar-acting peptides. J. Pharmacol. Exp. Ther. 285, 619–627.Search in Google Scholar
Brown, B.P., Kang, S.C., Gawelek, K., Zacharias, R.A., Anderson, S.R., Turner, C.P., and Morris, J.K. (2015). In vivo and in vitro ketamine exposure exhibits a dose-dependent induction of activity-dependent neuroprotective protein in rat neurons. Neuroscience 290, 31–40.10.1016/j.neuroscience.2014.12.076Search in Google Scholar PubMed
Chierchia, L., Tussellino, M., Guarino, D., Carotenuto, R., DeMarco, N., Campanella, C., Biffo, S., and Vaccaro, M.C. (2014). Cytoskeletal proteins associate with components of the ribosomal maturation and translation apparatus in Xenopus stage I oocytes. Zygote 1–14.Search in Google Scholar
Coe, B.P., Witherspoon, K., Rosenfeld, J.A., van Bon, B.W., Vulto-van Silfhout, A.T., Bosco, P., Friend, K.L., Baker, C., Buono, S., Vissers, L.E., et al. (2014). Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat. Genet. 46, 1063–1071.10.1038/ng.3092Search in Google Scholar PubMed PubMed Central
De Rubeis, S., He, X., Goldberg, A.P., Poultney, C.S., Samocha, K., Cicek, A.E., Kou, Y., Liu, L., Fromer, M., Walker, S., et al. (2014). Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215.10.1038/nature13772Search in Google Scholar PubMed PubMed Central
Dresner, E., Agam, G., and Gozes, I. (2011). Activity-dependent neuroprotective protein (ADNP) expression level is correlated with the expression of the sister protein ADNP2: Deregulation in schizophrenia. Eur. Neuropsychopharmacol. 21, 355–361.10.1016/j.euroneuro.2010.06.004Search in Google Scholar PubMed
Dresner, E., Malishkevich, A., Arviv, C., Leibman Barak, S., Alon, S., Ofir, R., Gothilf, Y., and Gozes, I. (2012). Novel evolutionary-conserved role for the activity-dependent neuroprotective protein (ADNP) family that is important for erythropoiesis. J. Biol. Chem. 287, 40173–40185.10.1074/jbc.M112.387027Search in Google Scholar PubMed PubMed Central
Fernandez-Montesinos, R., Torres, M., Baglietto-Vargas, D., Gutierrez, A., Gozes, I., Vitorica, J., and Pozo, D. (2010). Activity-dependent neuroprotective protein (ADNP) expression in the amyloid precursor protein/presenilin 1 mouse model of Alzheimer’s disease. J. Mol. Neurosci. 41, 114–120.10.1007/s12031-009-9300-xSearch in Google Scholar PubMed
Furman, S., Steingart, R.A., Mandel, S., Hauser, J.M., Brenneman, D.E., and Gozes, I. (2004). Subcellular localization and secretion of activity-dependent neuroprotective protein in astrocytes. Neuron. Glia Biol. 1, 193–199.10.1017/S1740925X05000013Search in Google Scholar
Furman, S., Hill, J.M., Vulih, I., Zaltzman, R., Hauser, J.M., Brenneman, D.E., and Gozes, I. (2005). Sexual dimorphism of activity-dependent neuroprotective protein in the mouse arcuate nucleus. Neurosci. Lett. 373, 73–78.10.1016/j.neulet.2004.09.077Search in Google Scholar
Giladi, E., Hill, J.M., Dresner, E., Stack, C.M., and Gozes, I. (2007). Vasoactive intestinal peptide (VIP) regulates activity-dependent neuroprotective protein (ADNP) expression in vivo. J. Mol. Neurosci. 33, 278–283.10.1007/s12031-007-9003-0Search in Google Scholar
Gkogkas, C.G., Khoutorsky, A., Ran, I., Rampakakis, E., Nevarko, T., Weatherill, D.B., Vasuta, C., Yee, S., Truitt, M., Dallaire, P., et al. (2013). Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature 493, 371–377.10.1038/nature11628Search in Google Scholar
Glowa, J.R., Panlilio, L.V., Brenneman, D.E., Gozes, I., Fridkin, M., and Hill, J.M. (1992). Learning impairment following intracerebral administration of the HIV envelope protein gp120 or a VIP antagonist. Brain Res. 570, 49–53.10.1016/0006-8993(92)90562-NSearch in Google Scholar
Gozes, I., Meltzer, E., Rubinrout, S., Brenneman, D.E., and Fridkin, M. (1989). Vasoactive intestinal peptide potentiates sexual behavior: inhibition by novel antagonist. Endocrinology 125, 2945–2949.10.1210/endo-125-6-2945Search in Google Scholar PubMed
Gozes, I., Glowa, J., Brenneman, D.E., McCune, S.K., Lee, E., and Westphal, H. (1993). Learning and sexual deficiencies in transgenic mice carrying a chimeric vasoactive intestinal peptide gene. J. Mol. Neurosci. 4, 185–193.10.1007/BF02782501Search in Google Scholar PubMed
Gozes, I., Iram, T., Maryanovsky, E., Arviv, C., Rozenberg, L., Schirer, Y., Giladi, E., and Furman-Assaf, S. (2014). Novel tubulin and tau neuroprotective fragments sharing structural similarities with the drug candidate NAP (Davuentide). J. Alzheimers Dis. 40 (Suppl 1), S23–36.10.3233/JAD-131664Search in Google Scholar PubMed
Gozes, I., Yeheskel, A., and Pasmanik-Chor, M. (2015). Activity-dependent neuroprotective protein (ADNP): a case study for highly conserved chordata-specific genes shaping the brain and mutated in cancer. J. Alzheimers Dis. 45, 57–73.10.3233/JAD-142490Search in Google Scholar PubMed
Helsmoortel, C., Vulto-van Silfhout, A.T., Coe, B.P., Vandeweyer, G., Rooms, L., van den Ende, J., Schuurs-Hoeijmakers, J.H., Marcelis, C.L., Willemsen, M.H., Vissers, L.E., et al. (2014). A SWI/SNF-related autism syndrome caused by de novo mutations in ADNP. Nat. Genet. 46, 380–384.10.1038/ng.2899Search in Google Scholar PubMed PubMed Central
Hill, J.M., Hauser, J.M., Sheppard, L.M., Abebe, D., Spivak-Pohis, I., Kushnir, M., Deitch, I., and Gozes, I. (2007). Blockage of VIP during mouse embryogenesis modifies adult behavior and results in permanent changes in brain chemistry. J. Mol. Neurosci. 31, 183–200.10.1385/JMN:31:03:185Search in Google Scholar
Holtser-Cochav, M., Divinski, I., and Gozes, I. (2006). Tubulin is the target binding site for NAP-related peptides: ADNF-9, D-NAP, and D-SAL. J. Mol. Neurosci. 28, 303–307.10.1385/JMN:28:3:303Search in Google Scholar
Jarskog, L.F., Dong, Z., Kangarlu, A., Colibazzi, T., Girgis, R.R., Kegeles, L.S., Barch, D.M., Buchanan, R.W., Csernansky, J.G., Goff, D.C., et al. (2013). Effects of davunetide on N-acetylaspartate and choline in dorsolateral prefrontal cortex in patients with schizophrenia. Neuropsychopharmacology 38, 1245–1252.10.1038/npp.2013.23Search in Google Scholar
Javitt, D.C., Buchanan, R.W., Keefe, R.S., Kern, R., McMahon, R.P., Green, M.F., Lieberman, J., Goff, D.C., Csernansky, J.G., McEvoy, J.P., et al. (2012). Effect of the neuroprotective peptide davunetide (AL-108) on cognition and functional capacity in schizophrenia. Schizophr. Res. 136, 25–31.10.1016/j.schres.2011.11.001Search in Google Scholar
Jaworski, J., Kapitein, L.C., Gouveia, S.M., Dortland, B.R., Wulf, P.S., Grigoriev, I., Camera, P., Spangler, S.A., Di Stefano, P., Demmers, J., et al. (2009). Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron 61, 85–100.10.1016/j.neuron.2008.11.013Search in Google Scholar
Jouroukhin, Y., Ostritsky, R., Assaf, Y., Pelled, G., Giladi, E., and Gozes, I. (2013). NAP (davunetide) modifies disease progression in a mouse model of severe neurodegeneration: protection against impairments in axonal transport. Neurobiol. Dis. 56C, 79–94.10.1016/j.nbd.2013.04.012Search in Google Scholar
Kushnir, M., Dresner, E., Mandel, S., and Gozes, I. (2008). Silencing of the ADNP-family member, ADNP2, results in changes in cellular viability under oxidative stress. J. Neurochem. 105, 537–545.10.1111/j.1471-4159.2007.05173.xSearch in Google Scholar
Luo, S., and Rubinsztein, D.C. (2013). BCL2L11/BIM: a novel molecular link between autophagy and apoptosis. Autophagy 9, 104–105.10.4161/auto.22399Search in Google Scholar
Magen, I., and Gozes, I. (2013). Microtubule-stabilizing peptides and small molecules protecting axonal transport and brain function: focus on davunetide (NAP). Neuropeptides 47, 489–495.10.1016/j.npep.2013.10.011Search in Google Scholar
Magen, I., and Gozes, I. (2014). Davunetide: Peptide therapeutic in neurological disorders. Curr. Med. Chem. 21, 2591–2598.10.2174/0929867321666140217124945Search in Google Scholar
Malishkevich, A., Amram, N., Hacohen-Kleiman, G., Magen, I., Giladi, E., and Gozes, I. (2015). Activity-dependent neuroprotective protein (ADNP) exhibits striking sexual dichotomy impacting on autistic and Alzheimer’s pathologies. Transl. Psychiatry 5, e501.10.1038/tp.2014.138Search in Google Scholar
Mandel, S. and Gozes, I. (2007). Activity-dependent neuroprotective protein constitutes a novel element in the SWI/SNF chromatin remodeling complex. J. Biol. Chem. 282, 34448–34456.10.1074/jbc.M704756200Search in Google Scholar
Mandel, S., Rechavi, G., and Gozes, I. (2007). Activity-dependent neuroprotective protein (ADNP) differentially interacts with chromatin to regulate genes essential for embryogenesis. Dev. Biol. 303, 814–824.10.1016/j.ydbio.2006.11.039Search in Google Scholar
Mandel, S., Spivak-Pohis, I., and Gozes, I. (2008). ADNP differential nucleus/cytoplasm localization in neurons suggests multiple roles in neuronal differentiation and maintenance. J. Mol. Neurosci. 35, 127–141.10.1007/s12031-007-9013-ySearch in Google Scholar
Matsuoka, Y., Gray, A.J., Hirata-Fukae, C., Minami, S.S., Waterhouse, E.G., Mattson, M.P., LaFerla, F.M., Gozes, I., and Aisen, P.S. (2007). Intranasal NAP administration reduces accumulation of amyloid peptide and tau hyperphosphorylation in a transgenic mouse model of Alzheimer’s disease at early pathological stage. J. Mol. Neurosci. 31, 165–170.10.1385/JMN/31:02:165Search in Google Scholar
Matsuoka, Y., Jouroukhin, Y., Gray, A.J., Ma, L., Hirata-Fukae, C., Li, H.F., Feng, L., Lecanu, L., Walker, B.R., Planel, E., et al. (2008). A neuronal microtubule-interacting agent, NAPVSIPQ, reduces tau pathology and enhances cognitive function in a mouse model of Alzheimer’s disease. J. Pharmacol. Exp. Ther. 325, 146–153.10.1124/jpet.107.130526Search in Google Scholar PubMed
Merenlender-Wagner, A., Pikman, R., Giladi, E., Andrieux, A., and Gozes, I. (2010). NAP (davunetide) enhances cognitive behavior in the STOP heterozygous mouse – a microtubule-deficient model of schizophrenia. Peptides 31, 1368–1373.10.1016/j.peptides.2010.04.011Search in Google Scholar PubMed
Merenlender-Wagner, A., Shemer, Z., Touloumi, O., Lagoudaki, R., Giladi, E., Andrieux, A., Grigoriadis, N.C., and Gozes, I. (2014). New horizons in schizophrenia treatment: autophagy protection is coupled with behavioral improvements in a mouse model of schizophrenia. Autophagy 10, 2324–2332.10.4161/15548627.2014.984274Search in Google Scholar PubMed PubMed Central
Merenlender-Wagner, A., Malishkevich, A., Shemer, Z., Udawela, M., Gibbons, A., Scarr, E., Dean, B., Levine, J., Agam, G., and Gozes, I. (2015). Autophagy has a key role in the pathophysiology of schizophrenia. Mol. Psychiatry 20, 126–132.10.1038/mp.2013.174Search in Google Scholar PubMed PubMed Central
Morimoto, B.H., Schmechel, D., Hirman, J., Blackwell, A., Keith, J., and Gold, M. (2013). A double-blind, placebo-controlled, ascending-dose, randomized study to evaluate the safety, tolerability and effects on cognition of AL-108 after 12 weeks of intranasal administration in subjects with mild cognitive impairment. Dement. Geriatr. Cogn. Disord. 35, 325–336.10.1159/000348347Search in Google Scholar PubMed
Mosch, K., Franz, H., Soeroes, S., Singh, P.B., and Fischle, W. (2011). HP1 recruits activity-dependent neuroprotective protein to H3K9me3 marked pericentromeric heterochromatin for silencing of major satellite repeats. PLoS One 6, e15894.10.1371/journal.pone.0015894Search in Google Scholar PubMed PubMed Central
O’Roak, B.J., Vives, L., Fu, W., Egertson, J.D., Stanaway, I.B., Phelps, I.G., Carvill, G., Kumar, A., Lee, C., Ankenman, K., et al. (2012a). Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 338, 1619–1622.10.1126/science.1227764Search in Google Scholar
O’Roak, B.J., Vives, L., Girirajan, S., Karakoc, E., Krumm, N., Coe, B.P., Levy, R., Ko, A., Lee, C., Smith, J.D., et al. (2012b). Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246–250.10.1038/nature10989Search in Google Scholar
Oz, S., Ivashko-Pachima, Y., and Gozes, I. (2012). The ADNP derived peptide, NAP modulates the tubulin pool: implication for neurotrophic and neuroprotective activities. PLoS One 7, e51458.10.1371/journal.pone.0051458Search in Google Scholar
Oz, S., Kapitansky, O., Ivashco-Pachima, Y., Malishkevich, A., Giladi, E., Skalka, N., Rosin-Arbesfeld, R., Mittelman, L., Segev, O., Hirsch, J.A., et al. (2014). The NAP motif of activity-dependent neuroprotective protein (ADNP) regulates dendritic spines through microtubule end binding proteins. Mol. Psychiatry 19, 1115–1124.10.1038/mp.2014.97Search in Google Scholar
Pescosolido, M.F., Schwede, M., Johnson Harrison, A., Schmidt, M., Gamsiz, E.D., Chen, W.S., Donahue, J.P., Shur, N., Jerskey, B.A., Phornphutkul, C., et al. (2014). Expansion of the clinical phenotype associated with mutations in activity-dependent neuroprotective protein. J. Med. Genet. 51, 587–589.10.1136/jmedgenet-2014-102444Search in Google Scholar
Pinhasov, A., Mandel, S., Torchinsky, A., Giladi, E., Pittel, Z., Goldsweig, A.M., Servoss, S.J., Brenneman, D.E., and Gozes, I. (2003). Activity-dependent neuroprotective protein: a novel gene essential for brain formation. Brain Res. Dev. Brain Res. 144, 83–90.10.1016/S0165-3806(03)00162-7Search in Google Scholar
Quraishe, S., Cowan, C.M., and Mudher, A. (2013). NAP (davunetide) rescues neuronal dysfunction in a Drosophila model of tauopathy. Mol. Psychiatry 18, 834–842.10.1038/mp.2013.32Search in Google Scholar PubMed PubMed Central
Schirer, Y., Malishkevich, A., Ophir, Y., Lewis, J., Giladi, E., and Gozes, I. (2014). Novel marker for the onset of frontotemporal dementia: early increase in activity-dependent neuroprotective protein (ADNP) in the face of Tau mutation. PLoS One 9, e87383.10.1371/journal.pone.0087383Search in Google Scholar PubMed PubMed Central
Shiryaev, N., Jouroukhin, Y., Giladi, E., Polyzoidou, E., Grigoriadis, N.C., Rosenmann, H., and Gozes, I. (2009). NAP protects memory, increases soluble tau and reduces tau hyperphosphorylation in a tauopathy model. Neurobiol. Dis. 34, 381–388.10.1016/j.nbd.2009.02.011Search in Google Scholar PubMed
Sudo, H. and Baas, P.W. (2011). Strategies for diminishing katanin-based loss of microtubules in tauopathic neurodegenerative diseases. Hum. Mol. Genet. 20, 763–778.10.1093/hmg/ddq521Search in Google Scholar PubMed PubMed Central
Vandeweyer, G., Helsmoortel, C., Van Dijck, A., Vulto-van Silfhout, A.T., Coe, B.P., Bernier, R., Gerdts, J., Rooms, L., van den Ende, J., Bakshi, M., et al. (2014). The transcriptional regulator ADNP links the BAF (SWI/SNF) complexes with autism. Am. J. Med. Genet. C Semin. Med. Genet. 166C, 315–326.10.1002/ajmg.c.31413Search in Google Scholar PubMed PubMed Central
Vulih-Shultzman, I., Pinhasov, A., Mandel, S., Grigoriadis, N., Touloumi, O., Pittel, Z., and Gozes, I. (2007). Activity-dependent neuroprotective protein snippet NAP reduces tau hyperphosphorylation and enhances learning in a novel transgenic mouse model. J. Pharmacol. Exp. Ther. 323, 438–449.10.1124/jpet.107.129551Search in Google Scholar PubMed
Yang, M.H., Yang, Y.H., Lu, C.Y., Jong, S.B., Chen, L.J., Lin, Y.F., Wu, S.J., Chu, P.Y., Chung, T.W., and Tyan, Y.C. (2012). Activity-dependent neuroprotector homeobox protein: a candidate protein identified in serum as diagnostic biomarker for Alzheimer’s disease. J. Proteomics 75, 3617–3629.10.1016/j.jprot.2012.04.017Search in Google Scholar PubMed
Zamostiano, R., Pinhasov, A., Gelber, E., Steingart, R.A., Seroussi, E., Giladi, E., Bassan, M., Wollman, Y., Eyre, H.J., Mulley, J.C., et al. (2001). Cloning and characterization of the human activity-dependent neuroprotective protein. J. Biol. Chem. 276, 708–714.10.1074/jbc.M007416200Search in Google Scholar PubMed
Zusev, M. and Gozes, I. (2004). Differential regulation of activity-dependent neuroprotective protein in rat astrocytes by VIP and PACAP. Regul. Pept. 123, 33–41.10.1016/j.regpep.2004.05.021Search in Google Scholar PubMed
©2016 by De Gruyter
Articles in the same Issue
- Frontmatter
- Guest Editorial
- Highlight: Perspectives of molecular neuroscience in health and disease
- HIGHLIGHT: CURRENT CONCE PTS OF PROTECTION AND REGE NERATION IN BRAIN DISORDERS
- The cytoskeleton as a drug target for neuroprotection: the case of the autism- mutated ADNP
- Protein aggregate formation in oligodendrocytes: tau and the cytoskeleton at the intersection of neuroprotection and neurodegeneration
- How to build the fastest receptor on earth
- Signaling pathways regulating Homer1a expression: implications for antidepressant therapy
- RAS and downstream RAF-MEK and PI3K-AKT signaling in neuronal development, function and dysfunction
- Defective actin dynamics in dendritic spines: cause or consequence of age-induced cognitive decline?
- Review
- Role of chitinase-like proteins in cancer
- Research Articles/Short Communications
- Cell Biology and Signaling
- Ectopic overexpression of Nanog induces tumorigenesis in non-tumorous fibroblasts
- Chemopreventive and hepatoprotective roles of adiponectin (SULF2 inhibitor) in hepatocelluar carcinoma
- Molecular Medicine
- Increased secretory sphingomyelinase activity in the first trimester of pregnancy in women later developing preeclampsia: a nested case-control study
Articles in the same Issue
- Frontmatter
- Guest Editorial
- Highlight: Perspectives of molecular neuroscience in health and disease
- HIGHLIGHT: CURRENT CONCE PTS OF PROTECTION AND REGE NERATION IN BRAIN DISORDERS
- The cytoskeleton as a drug target for neuroprotection: the case of the autism- mutated ADNP
- Protein aggregate formation in oligodendrocytes: tau and the cytoskeleton at the intersection of neuroprotection and neurodegeneration
- How to build the fastest receptor on earth
- Signaling pathways regulating Homer1a expression: implications for antidepressant therapy
- RAS and downstream RAF-MEK and PI3K-AKT signaling in neuronal development, function and dysfunction
- Defective actin dynamics in dendritic spines: cause or consequence of age-induced cognitive decline?
- Review
- Role of chitinase-like proteins in cancer
- Research Articles/Short Communications
- Cell Biology and Signaling
- Ectopic overexpression of Nanog induces tumorigenesis in non-tumorous fibroblasts
- Chemopreventive and hepatoprotective roles of adiponectin (SULF2 inhibitor) in hepatocelluar carcinoma
- Molecular Medicine
- Increased secretory sphingomyelinase activity in the first trimester of pregnancy in women later developing preeclampsia: a nested case-control study