Startseite Lebenswissenschaften Redox imaging using genetically encoded redox indicators in zebrafish and mice
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Redox imaging using genetically encoded redox indicators in zebrafish and mice

  • Michael O. Breckwoldt EMAIL logo , Christine Wittmann , Thomas Misgeld , Martin Kerschensteiner und Clemens Grabher EMAIL logo
Veröffentlicht/Copyright: 29. Januar 2015

Abstract

Redox signals have emerged as important regulators of cellular physiology and pathology. The advent of redox imaging in vertebrate systems now provides the opportunity to dynamically visualize redox signaling during development and disease. In this review, we summarize recent advances in the generation of genetically encoded redox indicators (GERIs), introduce new redox imaging strategies, and highlight key publications in the field of vertebrate redox imaging. We also discuss the limitations and future potential of in vivo redox imaging in zebrafish and mice.


Corresponding authors: Michael O. Breckwoldt, Department of Neuroradiology, University of Heidelberg, Im Neuenheimer Feld 400, D-69120 Heidelberg, Germany, e-mail: ; and Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; and Clemens Grabher, Karlsruhe Institute für Technologie (KIT), Institut für Toxikologie und Genetik (ITG), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany, e-mail:
aThese authors contributed equally to this article.

Acknowledgments

M.O.B. acknowledges the support provided by a physician-scientist fellowship of the Medical Faculty, University of Heidelberg. C.W. was supported by a Helmholtz joint project initiative between KIT and DKFZ. C.G. was supported by a Marie Curie International Reintegration Grant within the 7th European Community Framework Program (PIRG07-GA-2010-267552). Further thanks go to Heidelberg-Karlsruhe Research Bridge (HeiKa) for the financial support given to C.G. within the synthetic biology platform. C.G., T.M., and M.K. are supported by the DFG Priority Program ‘Dynamics of thiol-based redox switches in cellular physiology’ (SPP1710).

References

Akerboom, J., Carreras Calderón, N., Tian, L., Wabnig, S., Prigge, M., Tolö, J., Gordus, A., Orger, M.B., Severi, K.E., Macklin, J.J., et al. (2013). Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front. Mol. Neurosci. 6, 1–29.10.3389/fnmol.2013.00002Suche in Google Scholar PubMed PubMed Central

Albrecht, S.C., Barata, A.G., Großhans, J., Teleman, A.A., and Dick, T.P. (2011). In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. Cell Metab. 14, 819–829.10.1016/j.cmet.2011.10.010Suche in Google Scholar PubMed

Barata, A.G., and Dick, T.P. (2013). In vivo imaging of H2O2 production in Drosophila. Meth. Enzymol. 526, 61–82.10.1016/B978-0-12-405883-5.00004-1Suche in Google Scholar PubMed

Belousov, V.V., Fradkov, A.F., Lukyanov, K.A., Staroverov, D.B., Shakhbazov, K.S., Terskikh, A.V., and Lukyanov, S. (2006). Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3, 281–286.10.1038/nmeth866Suche in Google Scholar PubMed

Bilan, D.S., Pase, L., Joosen, L., Gorokhovatsky, A.Y., Ermakova, Y.G., Gadella, T.W.J., Grabher, C., Schultz, C., Lukyanov, S., and Belousov, V.V. (2013). HyPer-3: a genetically encoded H2O2 probe with improved performance for ratiometric and fluorescence lifetime imaging. ACS Chem. Biol. 8, 535–542.10.1021/cb300625gSuche in Google Scholar PubMed

Brecht, M., Fee, M.S., Garaschuk, O., Helmchen, F., Margrie, T.W., Svoboda, K., and Osten, P. (2004). Novel approaches to monitor and manipulate single neurons in vivo. J. Neurosci. 24, 9223–9227.10.1523/JNEUROSCI.3344-04.2004Suche in Google Scholar PubMed PubMed Central

Breckwoldt, M.O., Pfister, F.M.J., Bradley, P.M., Marinković, P., Williams, P.R., Brill, M.S., Plomer, B., Schmalz, A., Clair, D.K.S., Naumann, R., et al. (2014). Multiparametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology in vivo. Nat. Med. 20, 555–560.10.1038/nm.3520Suche in Google Scholar PubMed

Carlson, G.C., and Coulter, D.A. (2008). In vitro functional imaging in brain slices using fast voltage-sensitive dye imaging combined with whole-cell patch recording. Nat. Protoc. 3, 249–255.10.1038/nprot.2007.539Suche in Google Scholar PubMed PubMed Central

Chazotte, B. (2011). Labeling mitochondria with TMRM or TMRE. Cold Spring Harb. Protoc. 2011, 895–897.Suche in Google Scholar

Chouchani, E.T., Methner, C., Nadtochiy, S.M., Logan, A., Pell, V.R., Ding, S., James, A.M., Cochemé, H.M., Reinhold, J., Lilley, K.S., et al. (2013). Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat. Med. 19, 753–759.10.1038/nm.3212Suche in Google Scholar PubMed PubMed Central

D’Autréaux, B., and Toledano, M.B. (2007). ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol 8, 813–824.10.1038/nrm2256Suche in Google Scholar PubMed

Dittgen, T., Nimmerjahn, A., Komai, S., Licznerski, P., Waters, J., Margrie, T.W., Helmchen, F., Denk, W., Brecht, M., and Osten, P. (2004). Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc. Natl. Acad. Sci. USA 101, 18206–18211.10.1073/pnas.0407976101Suche in Google Scholar PubMed PubMed Central

Dooley, C.T., Dore, T.M., Hanson, G.T., Jackson, W.C., Remington, S.J., and Tsien, R.Y. (2004). Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J. Biol. Chem. 279, 22284–22293.10.1074/jbc.M312847200Suche in Google Scholar PubMed

Drew, P.J., Shih, A.Y., Driscoll, J.D., Knutsen, P.M., Blinder, P., Davalos, D., Akassoglou, K., Tsai, P.S., and Kleinfeld, D. (2010). Chronic optical access through a polished and reinforced thinned skull. Nat. Methods 7, 981–984.10.1038/nmeth.1530Suche in Google Scholar PubMed PubMed Central

Enyedi, B., Zana, M., Donkó, Á., and Geiszt, M. (2013). Spatial and temporal analysis of NADPH oxidase-generated hydrogen peroxide signals by novel fluorescent reporter proteins. Antioxidants Redox Signaling 19, 523–534.10.1089/ars.2012.4594Suche in Google Scholar PubMed

Ermakova, Y.G., Bilan, D.S., Matlashov, M.E., Mishina, N.M., Markvicheva, K.N., Subach, O.M., Subach, F.V., Bogeski, I., Hoth, M., Enikolopov, G., et al. (2014). Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide. Nat. Commun. 5, 5222.10.1038/ncomms6222Suche in Google Scholar PubMed PubMed Central

Ezeriņa, D., Morgan, B., and Dick, T.P. (2014). Imaging dynamic redox processes with genetically encoded probes. J. Mol. Cell. Cardiol. 73, 43–49.10.1016/j.yjmcc.2013.12.023Suche in Google Scholar PubMed

Goldberg, J.A., Guzman, J.N., Estep, C.M., Ilijic, E., Kondapalli, J., Sanchez-Padilla, J., and Surmeier, D.J. (2012). Calcium entry induces mitochondrial oxidant stress in vagal neurons at risk in Parkinson’s disease. Nat. Neurosci. 15, 1414–1421.10.1038/nn.3209Suche in Google Scholar PubMed PubMed Central

Grienberger, C., and Konnerth, A. (2012). Imaging calcium in neurons. Neuron 73, 862–885.10.1016/j.neuron.2012.02.011Suche in Google Scholar PubMed

Gutscher, M., Pauleau, A.-L., Marty, L., Brach, T., Wabnitz, G.H., Samstag, Y., Meyer, A.J., and Dick, T.P. (2008). Real-time imaging of the intracellular glutathione redox potential. Nat. Meth. 5, 553–559.10.1038/nmeth.1212Suche in Google Scholar PubMed

Gutscher, M., Sobotta, M.C., Wabnitz, G.H., Ballikaya, S., Meyer, A.J., Samstag, Y., and Dick, T.P. (2009). Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J. Biol. Chem. 284, 31532–31540.10.1074/jbc.M109.059246Suche in Google Scholar PubMed PubMed Central

Guzman, J.N., Sanchez-Padilla, J., Wokosin, D., Kondapalli, J., Ilijic, E., Schumacker, P.T., and Surmeier, D.J. (2010). Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468, 696–700.10.1038/nature09536Suche in Google Scholar PubMed PubMed Central

Han, P., Zhou, X.-H., Chang, N., Xiao, C.-L., Yan, S., Ren, H., Yang, X.-Z., Zhang, M.-L., Wu, Q., Tang, B., et al. (2014). Hydrogen peroxide primes heart regeneration with a derepression mechanism. Cell. Res. 24, 1091–1107.10.1038/cr.2014.108Suche in Google Scholar PubMed PubMed Central

Hanson, G.T., Aggeler, R., Oglesbee, D., Cannon, M., Capaldi, R.A., Tsien, R.Y., and Remington, S.J. (2004). Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J. Biol. Chem. 279, 13044–13053.10.1074/jbc.M312846200Suche in Google Scholar PubMed

Helmchen, F., and Denk, W. (2005). Deep tissue two-photon microscopy. Nat. Methods 2, 932–940.10.1038/nmeth818Suche in Google Scholar PubMed

Herrmann, J.M., and Dick, T.P. (2012). Redox biology on the rise. J. Biol. Chem. 393, 999–1004.10.1515/hsz-2012-0111Suche in Google Scholar PubMed

Kaludercic, N., Deshwal, S., and Di Lisa, F. (2014). Reactive oxygen species and redox compartmentalization. Front. Physiol. 5, 285.10.3389/fphys.2014.00285Suche in Google Scholar PubMed PubMed Central

Kerr, J.N.D., and Denk, W. (2008). Imaging in vivo: watching the brain in action. Nat. Rev. Neurosci. 9, 195–205.10.1038/nrn2338Suche in Google Scholar PubMed

Kerschensteiner, M., Schwab, M.E., Lichtman, J.W., and Misgeld, T. (2005). In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat. Med. 11, 572–577.10.1038/nm1229Suche in Google Scholar PubMed

Kerschensteiner, M., Reuter, M.S., Lichtman, J.W., and Misgeld, T. (2008). Ex vivo imaging of motor axon dynamics in murine triangularis sterni explants. Nat. Protoc. 3, 1645–1653.10.1038/nprot.2008.160Suche in Google Scholar PubMed PubMed Central

Klugmann, M., Symes, C.W., Leichtlein, C.B., Klaussner, B.K., Dunning, J., Fong, D., Young, D., and During, M.J. (2005). AAV-mediated hippocampal expression of short and long Homer 1 proteins differentially affect cognition and seizure activity in adult rats. Mol. Cell. Neurosci. 28, 347–360.10.1016/j.mcn.2004.10.002Suche in Google Scholar PubMed

Kolossov, V.L., Spring, B.Q., Sokolowski, A., Conour, J.E., Clegg, R.M., Kenis, P.J.A., and Gaskins, H.R. (2008). Engineering redox-sensitive linkers for genetically encoded FRET-based biosensors. Exp. Biol. Med. 233, 238–248.10.3181/0707-RM-192Suche in Google Scholar PubMed

Kumar, C., Igbaria, A., D’Autréaux, B., Planson, A.-G., Junot, C., Godat, E., Bachhawat, A.K., Delaunay-Moisan, A., and Toledano, M.B. (2011). Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol-redox control. EMBO J. 30, 2044–2056.10.1038/emboj.2011.105Suche in Google Scholar PubMed PubMed Central

Lichtman, J.W., and Conchello, J.-A. (2005). Fluorescence microscopy. Nat. Methods 2, 910–919.10.1038/nmeth817Suche in Google Scholar PubMed

Lichtman, J.W., and Sanes, J.R. (2003). Watching the neuromuscular junction. J. Neurocytol. 32, 767–775.10.1023/B:NEUR.0000020622.58471.37Suche in Google Scholar

Lin, M.T., and Beal, M.F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787–795.10.1038/nature05292Suche in Google Scholar PubMed

Lukyanov, K.A., and Belousov, V.V. (2013). Genetically encoded fluorescent redox sensors. Biochim. Biophys. Acta. Gen. Subj. 1840, 745–756.10.1016/j.bbagen.2013.05.030Suche in Google Scholar PubMed

Marinković, P., Reuter, M.S., Brill, M.S., Godinho, L., Kerschensteiner, M., and Misgeld, T. (2012). Axonal transport deficits and degeneration can evolve independently in mouse models of amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 109, 4296–4301.10.1073/pnas.1200658109Suche in Google Scholar PubMed PubMed Central

Meyer, A.J., and Dick, T.P. (2010). Fluorescent protein-based redox probes. Antioxidants Redox Signaling 13, 621–650.10.1089/ars.2009.2948Suche in Google Scholar PubMed

Misgeld, T., and Kerschensteiner, M. (2006). In vivo imaging of the diseased nervous system. Nat. Rev. Neurosci. 7, 449–463.10.1038/nrn1905Suche in Google Scholar PubMed

Murphy, M.P., Holmgren, A., Larsson, N.-G., Halliwell, B., Chang, C.J., Kalyanaraman, B., Rhee, S.G., Thornalley, P.J., Partridge, L., Gems, D., et al. (2011). Unraveling the biological roles of reactive oxygen species. Cell Metabolism 13, 361–366.10.1016/j.cmet.2011.03.010Suche in Google Scholar PubMed PubMed Central

Nagai, T., Sawano, A., Park, E.S., and Miyawaki, A. (2001). Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc. Natl. Acad. Sci. USA 98, 3197–3202.10.1073/pnas.051636098Suche in Google Scholar PubMed PubMed Central

Nagai, T., Ibata, K., Park, E.S., Kubota, M., Mikoshiba, K., and Miyawaki, A. (2002). A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90.10.1038/nbt0102-87Suche in Google Scholar PubMed

Niethammer, P., Grabher, C., Look, A.T., and Mitchison, T.J. (2009). A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459, 996–999.10.1038/nature08119Suche in Google Scholar PubMed PubMed Central

O’Donnell, K.C., Vargas, M.E., and Sagasti, A. (2013). WldS and PGC-1 regulate mitochondrial transport and oxidation state after axonal injury. J. Neurosci. 33, 14778–14790.10.1523/JNEUROSCI.1331-13.2013Suche in Google Scholar PubMed PubMed Central

Pase, L., Layton, J.E., Wittmann, C., Ellett, F., Nowell, C.J., Reyes-Aldasoro, C.C., Varma, S., Rogers, K.L., Hall, C.J., Keightley, M.C., et al. (2012). Neutrophil-delivered myeloperoxidase dampens the hydrogen peroxide burst after tissue wounding in zebrafish. Curr. Biol. 22, 1818–1824.10.1016/j.cub.2012.07.060Suche in Google Scholar PubMed

Rawls, J.F., Mellgren, E.M., and Johnson, S.L. (2001). How the zebrafish gets its stripes. Dev. Biol. 240, 301–314.10.1006/dbio.2001.0418Suche in Google Scholar PubMed

Rieger, S., Wang, F., and Sagasti, A. (2011). Time-lapse imaging of neural development: zebrafish lead the way into the fourth dimension. Genesis 49, 534–545.10.1002/dvg.20729Suche in Google Scholar PubMed PubMed Central

Sanchez-Padilla, J., Guzman, J.N., Ilijic, E., Kondapalli, J., Galtieri, D.J., Ben Yang, Schieber, S., Oertel, W., Wokosin, D., Schumacker, P.T., et al. (2014). Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase. Nat. Neurosci. 17, 832–840.10.1038/nn.3717Suche in Google Scholar PubMed PubMed Central

Schinzel, A.C., Takeuchi, O., Huang, Z., Fisher, J.K., Zhou, Z., Rubens, J., Hetz, C., Danial, N.N., Moskowitz, M.A., and Korsmeyer, S.J. (2005). Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc. Natl. Acad. Sci. USA 102, 12005–12010.10.1073/pnas.0505294102Suche in Google Scholar PubMed PubMed Central

Schwarzländer, M., Logan, D.C., Fricker, M.D., and Sweetlove, L.J. (2011). The circularly permuted yellow fluorescent protein cpYFP that has been used as a superoxide probe is highly responsive to pH but not superoxide in mitochondria: implications for the existence of superoxide “flashes.” Biochem. J. 437, 381–387.10.1042/BJ20110883Suche in Google Scholar PubMed

Schwarzländer, M., Murphy, M.P., Duchen, M.R., Logan, D.C., Fricker, M.D., Halestrap, A.P., Müller, F.L., Rizzuto, R., Dick, T.P., Meyer, A.J., et al. (2012). Mitochondrial “flashes”: a radical concept repHined. Trends. Cell. Biol. 22, 503–508.10.1016/j.tcb.2012.07.007Suche in Google Scholar PubMed

Schwarzländer, M., Wagner, S., Ermakova, Y.G., Belousov, V.V., Radi, R., Beckman, J.S., Buettner, G.R., Demaurex, N., Duchen, M.R., Forman, H.J., et al. (2014). The “mitoflash” probe cpYFP does not respond to superoxide. Nature 514, E12–E14.10.1038/nature13858Suche in Google Scholar PubMed PubMed Central

Seiler, C., Davuluri, G., Abrams, J., Byfield, F.J., Janmey, P.A., and Pack, M. (2012). Smooth muscle tension induces invasive remodeling of the zebrafish intestine. PLoS Biol. 10, e1001386.10.1371/journal.pbio.1001386Suche in Google Scholar PubMed PubMed Central

Sena, L.A., Li, S., Jairaman, A., Prakriya, M., Ezponda, T., Hildeman, D.A., Wang, C.-R., Schumacker, P.T., Licht, J.D., Perlman, H., et al. (2013). Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38, 225–236.10.1016/j.immuni.2012.10.020Suche in Google Scholar PubMed PubMed Central

Shen, E.-Z., Song, C.-Q., Lin, Y., Zhang, W.-H., Su, P.-F., Liu, W.-Y., Zhang, P., Xu, J., Lin, N., Zhan, C., et al. (2014). Mitoflash frequency in early adulthood predicts lifespan in Caenorhabditis elegans. Nature 508, 128–132.10.1038/nature13012Suche in Google Scholar PubMed

Tantama, M., Hung, Y.P., and Yellen, G. (2012). Optogenetic reporters: fluorescent protein-based genetically-encoded indicators of signaling and metabolism in the brain. Progr. Brain. Res. 196, 235–263.10.1016/B978-0-444-59426-6.00012-4Suche in Google Scholar PubMed PubMed Central

Thestrup, T., Litzlbauer, J., Bartholomäus, I., Mues, M., Russo, L., Dana, H., Kovalchuk, Y., Liang, Y., Kalamakis, G., Laukat, Y., et al. (2014). Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. Nat. Methods 11, 175–182.10.1038/nmeth.2773Suche in Google Scholar PubMed

Tian, L., Hires, S.A., Mao, T., Huber, D., Chiappe, M.E., Chalasani, S.H., Petreanu, L., Akerboom, J., McKinney, S.A., Schreiter, E.R., et al. (2009). Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–881.10.1038/nmeth.1398Suche in Google Scholar PubMed PubMed Central

Trachtenberg, J.T., Chen, B.E., Knott, G.W., Feng, G., Sanes, J.R., Welker, E., and Svoboda, K. (2002). Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794.10.1038/nature01273Suche in Google Scholar PubMed

Wang, W., Fang, H., Groom, L., Cheng, A., Zhang, W., Liu, J., Wang, X., Li, K., Han, P., and Zheng, M. (2008). Superoxide flashes in single mitochondria. Cell 134, 279–290.10.1016/j.cell.2008.06.017Suche in Google Scholar PubMed PubMed Central

Wang, H., Karadge, U., Humphries, W.H., IV, and Fisher, A.L. (2014). Analyzing cell physiology in C. elegans with fluorescent ratiometric reporters. Methods 68, 508–517.10.1016/j.ymeth.2014.05.012Suche in Google Scholar PubMed PubMed Central

Weber, T., and Köster, R. (2013). Genetic tools for multicolor imaging in zebrafish larvae. Methods 62, 279–291.10.1016/j.ymeth.2013.07.028Suche in Google Scholar PubMed

Wei-LaPierre, L., Gong, G., Gerstner, B.J., Ducreux, S., Yule, D.I., Pouvreau, S., Wang, X., Sheu, S.-S., Cheng, H., and Dirksen, R.T. (2013). Respective contribution of mitochondrial superoxide and pH to Mt-cpYFP flash activity. J. Biol. Chem. 288, 10567–10577.10.1074/jbc.M113.455709Suche in Google Scholar PubMed PubMed Central

White, R.M., Sessa, A., Burke, C., Bowman, T., LeBlanc, J., Ceol, C., Bourque, C., Dovey, M., Goessling, W., Burns, C.E., et al. (2008). Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell. 2, 183–189.10.1016/j.stem.2007.11.002Suche in Google Scholar PubMed PubMed Central

Xie, H., Hou, S., Jiang, J., Sekutowicz, M., Kelly, J., and Bacskai, B.J. (2013). Rapid cell death is preceded by amyloid plaque-mediated oxidative stress. Proc. Natl. Acad. Sci. USA 110, 7904–7909.10.1073/pnas.1217938110Suche in Google Scholar PubMed PubMed Central

Yamada, Y., and Mikoshiba, K. (2012). Quantitative comparison of novel GCaMP-type genetically encoded calcium indicators in mammalian neurons. Front. Cell. Neurosci. 6, 41.10.3389/fncel.2012.00041Suche in Google Scholar PubMed PubMed Central

Yoo, S.K., Starnes, T.W., Deng, Q., and Huttenlocher, A. (2011). Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature 480, 109–112.10.1038/nature10632Suche in Google Scholar PubMed PubMed Central

Zhao, Y., Araki, S., Wu, J., Teramoto, T., Chang, Y.F., Nakano, M., Abdelfattah, A.S., Fujiwara, M., Ishihara, T., Nagai, T., et al. (2011). An expanded palette of genetically encoded Ca2+ indicators. Science 333, 1888–1891.10.1126/science.1208592Suche in Google Scholar PubMed PubMed Central

Received: 2014-12-3
Accepted: 2015-1-26
Published Online: 2015-1-29
Published in Print: 2015-5-1

©2015 by De Gruyter

Heruntergeladen am 19.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2014-0294/pdf
Button zum nach oben scrollen