Abstract
Voltage dependent anion channels (VDACs) are the most abundant proteins in the outer mitochondrial membrane. Although they are essential in metabolite exchange, cell defense and apoptosis, the molecular mechanism of these VDAC-mediated processes remains elusive. Here we review recent progress in terms of VDACs’ structure and regulation, with a special focus on the molecular aspects of gating and the interaction with effector proteins.
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: (Grant/Award Number: ‘ES 152/8-1’)
Acknowledgments
The authors wish to thank Deutsche Forschungsgemeinschaft for funding (ES 152/8-1), Michael Kock for help with ConSurf analysis, Dr Gert Bange for helpful discussions and Dr Sophia-Louisa Tsougarakis for the line editing of this manuscript.
References
Arbel, N., Ben-Hail, D., and Shoshan-Barmatz, V. (2012). Mediation of the antiapoptotic activity of Bcl-xL protein upon interaction with VDAC1 protein. J. Biol. Chem. 287, 23152–23161.Search in Google Scholar
Bayrhuber, M., Meins, T., Habeck, M., Becker, S., Giller, K., Villinger, S., Vonrhein, C., Griesinger, C., Zweckstetter, M., and Zeth, K. (2008). Structure of the human voltage-dependent anion channel. Proc. Natl. Acad. Sci. USA 105, 15370.Search in Google Scholar
Betaneli, V., Petrov, E.P., and Schwille, P. (2012). The role of lipids in VDAC oligomerization. Biophys. J. 102, 523–531.Search in Google Scholar
Chaanine, A.H., Gordon, R.E., Kohlbrenner, E., Benard, L., Jeong, D., and Hajjar, R.J. (2013). Potential role of BNIP3 in cardiac remodeling, myocardial stiffness, and endoplasmic reticulum mitochondrial calcium homeostasis in diastolic and systolic heart failure. Circ. Heart Fail 6, 572–583.Search in Google Scholar
Choudhary, O.P., Ujwal, R., Kowallis, W., Coalson, R., Abramson, J., and Grabe, M. (2010). The electrostatics of VDAC: implications for selectivity and gating. J. Mol. Biol. 396, 580–592.Search in Google Scholar
Colombini, M. (1989). Voltage gating in the mitochondrial channel, VDAC. J. Membrane Biol. 111, 103–111.Search in Google Scholar
Colombini, M. (2012). VDAC structure, selectivity, and dynamics. Biochim. Biophys. Acta 1818, 1457–1465.Search in Google Scholar
Godbole, A., Dubey, A.K., Reddy, P.S., Udayakumar, M., and Mathew, M.K. (2013). Mitochondrial VDAC and hexokinase together modulate plant programmed cell death. Protoplasma 250, 875–884.Search in Google Scholar
Han, D., Antunes, F., Canali, R., Rettori, D., and Cadenas, E. (2003). Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J. Biol. Chem. 278, 5557–5563.Search in Google Scholar
Hiller, S. and Wagner, G. (2009). The role of solution NMR in the structure determinations of VDAC-1 and other membrane proteins. Curr. Opin. Struct. Biol. 19, 396–401.Search in Google Scholar
Hiller, S., Garces, R.G., Malia, T.J., Orekhov, V.Y., Colombini, M., and Wagner, G. (2008). Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Sci. STKE 321, 1206.Search in Google Scholar
Homblé, F., Krammer, E.-M., and Prévost, M. (2012). Plant VDAC: facts and speculations. Biochim. Biophys. Acta 1818, 1486–1501.Search in Google Scholar
Kasimova, M.A., Tarek, M., Shaytan, A.K., Shaitan, K.V., and Delemotte, L. (2014). Voltage-gated ion channel modulation by lipids: Insights from molecular dynamics simulations. Biochim. Biophys. Acta 1838, 1322–1331.Search in Google Scholar
Kozuch, J., Weichbrodt, C., Millo, D., Giller, K., Becker, S., Hildebrandt, P., and Steinem, C. (2014). Voltage-dependent structural changes of the membrane-bound anion channel hVDAC1 probed by SEIRA and electrochemical impedance spectroscopy. Phys. Chem. Chem. Phys. 16, 9545–9555.Search in Google Scholar
Krammer, E.-M., Saidani, H., Prévost, M., and Homblé, F. (2014). Origin of ion selectivity in Phaseolus coccineus mitochondrial VDAC. Mitochondrion DOI: 10.1016/j.mito.2014.04.03 [epub ahead of print].Search in Google Scholar
Lee, K.I., Rui, H., Pastor, R.W., and Im, W. (2011). Brownian dynamics simulations of ion transport through the VDAC. Biophys. J. 100, 611–619.Search in Google Scholar
Lemeshko, V.V. (2014). VDAC electronics: 2. A new, anaerobic mechanism of generation of the membrane potentials in mitochondria. Biochim. Biophys. Acta 1838, 1801–1808.Search in Google Scholar
Malia, T.J. and Wagner, G. (2007). NMR structural investigation of the mitochondrial outer membrane protein VDAC and its interaction with antiapoptotic Bcl-xL. Biochemistry 46, 514–525.Search in Google Scholar
Maurya, S.R. and Mahalakshmi, R. (2013). Modulation of human mitochondrial voltage-dependent anion channel 2 (hVDAC-2) structural stability by cysteine-assisted barrel-lipid interactions. J. Biol. Chem. 288, 25584–25592.Search in Google Scholar
Maurya, S.R. and Mahalakshmi, R. (2014). Influence of protein–micelle ratios and cysteine residues on the kinetic stability and unfolding rates of human mitochondrial VDAC-2. PLoS One 9, e87701.Search in Google Scholar
Mertins, B., Psakis, G., Grosse, W., Back, K.C., Salisowski, A., Reiss, P., Koert, U., and Essen, L.-O. (2012). Flexibility of the N-terminal mVDAC1 segment controls the channel’s gating behavior. PLoS One 7, e47938.Search in Google Scholar
Mlayeh, L., Chatkaew, S., Léonetti, M., and Homblé, F. (2010). Modulation of plant mitochondrial VDAC by phytosterols. Biophys. J. 99, 2097–2106.Search in Google Scholar
Raemy, E. and Martinou, J.-C. (2013). Involvement of cardiolipin in tBID-induced activation of BAX during apoptosis. Chem. Phys. Lipids 179, 70–74.Search in Google Scholar
Raschle, T., Hiller, S., Yu, T.-Y., Rice, A.J., Walz, T., and Wagner, G. (2009). Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. J. Am. Chem. Soc. 131, 17777–17779.Search in Google Scholar
Reina, S., Magrì, A., Lolicato, M., Guarino, F., Impellizzeri, A., Maier, E., Benz, R., Ceccarelli, M., De Pinto, V., and Messina, A. (2013). Deletion of β-strands 9 and 10 converts VDAC1 voltage-dependence in an asymmetrical process. Biochim. Biophys. Acta 1827, 793–805.Search in Google Scholar
Rostovtseva, T.K., Antonsson, B., Suzuki, M., Youle, R.J., Colombini, M., and Bezrukov, S.M. (2004). Bid, but not Bax, regulates VDAC channels. J. Biol. Chem. 279, 13575–13583.Search in Google Scholar
Rostovtseva, T.K., Kazemi, N., Weinrich, M., and Bezrukov, S.M. (2006). Voltage gating of VDAC is regulated by nonlamellar lipids of mitochondrial membranes. J. Biol. Chem. 281, 37496–37506.Search in Google Scholar
Rui, H., Lee, K.I., Pastor, R.W., and Im, W. (2011). Molecular dynamics studies of ion permeation in VDAC. Biophys. J. 100, 602–610.Search in Google Scholar
Sampson, M.J., Decker, W.K., Beaudet, A.L., Ruitenbeek, W., Armstrong, D., Hicks, M.J., and Craigen, W.J. (2001). Immotile sperm and infertility in mice lacking mitochondrial voltage-dependent anion channel type 3. J. Biol. Chem. 276, 39206–39212.Search in Google Scholar
Schredelseker, J., Paz, A., López, C.J., Altenbach, C., Leung, C.S., Drexler, M.K., Chen, J.-N., Hubbell, W.L., and Abramson, J. (2014). High resolution structure and double electron-electron resonance of the zebrafish voltage-dependent anion channel 2 reveal an oligomeric population. J. Biol. Chem. 289, 12566–12577.Search in Google Scholar
Shimizu, S., Matsuoka, Y., Shinohara, Y., Yoneda, Y., and Tsujimoto, Y. (2001). Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells. J. Cell Biol. 152, 237–250.Search in Google Scholar
Shoshan-Barmatz, V. and Ben-Hail, D. (2012). VDAC, a multi-functional mitochondrial protein as a pharmacological target. Mitochondrion 12, 24–34.Search in Google Scholar
Shoshan-Barmatz, V., De Pinto, V., Zweckstetter, M., Raviv, Z., Keinan, N., and Arbel, N. (2010). VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol. Aspects Med. 31, 227–285.Search in Google Scholar
Takahashi, Y. and Tateda, C. (2013). The functions of voltage-dependent anion channels in plants. Apoptosis 18, 917–924.Search in Google Scholar
Tateda, C., Kusano, T., and Takahashi, Y. (2012). The Arabidopsis voltage-dependent anion channel 2 is required for plant growth. Plant Signal Behav. 7, 31–33.Search in Google Scholar
Ujwal, R., Cascio, D., Colletier, J.P., Faham, S., Zhang, J., Toro, L., Ping, P., and Abramson, J. (2008). The crystal structure of mouse VDAC1 at 2.3 Å resolution reveals mechanistic insights into metabolite gating. Proc. Natl. Acad. Sci. USA 105, 17742.Search in Google Scholar
Veresov, G. V. and Davidovskii, A.I. (2014). Structural insights into proapoptotic signaling mediated by MTCH2, VDAC2, TOM40 and TOM22. Cell Signal 26, 370–382.Search in Google Scholar
Vianello, A., Zancani, M., Peresson, C., Petrussa, E., Casolo, V., Krajňáková, J., Patui, S., Braidot, E., and Macrì, F. (2007). Plant mitochondrial pathway leading to programmed cell death. Physiologia Plantarum 129, 242–252.Search in Google Scholar
Villinger, S., Briones, R., Giller, K., Zachariae, U., Lange, A., de Groot, B.L., Griesinger, C., Becker, S., and Zweckstetter, M. (2010). Functional dynamics in the voltage-dependent anion channel. Proc. Natl. Acad. Sci. USA 107, 22546–22551.Search in Google Scholar
Weeber, E.J., Levy, M., Sampson, M.J., Anflous, K., Armstrong, D.L., Brown, S.E., Sweatt, J.D., and Craigen, W.J. (2002). The role of mitochondrial porins and the permeability transition pore in learning and synaptic plasticity. J. Biol. Chem. 277, 18891–18897.Search in Google Scholar
Wojtkowska, M., Jąkalski, M., Pieńkowska, J.R., Stobienia, O., Karachitos, A., Przytycka, T.M., Weiner, J., Kmita, H., and Makałowski, W. (2012). Phylogenetic analysis of mitochondrial outer membrane β-barrel channels. Genom. Biol. Evol. 4, 110–125.Search in Google Scholar
Yu, T.-Y., Raschle, T., Hiller, S., and Wagner, G. (2012). Solution NMR spectroscopic characterization of human VDAC-2 in detergent micelles and lipid bilayer nanodiscs. Biochim. Biophys. Acta 1818, 1562–1569.Search in Google Scholar
Zachariae, U., Schneider, R., Briones, R., Gattin, Z., Demers, J.-P., Giller, K., Maier, E., Zweckstetter, M., Griesinger, C., and Becker, S. (2012). β-Barrel mobility underlies closure of the voltage-dependent anion channel. Structure 20, 1540–1549.Search in Google Scholar
©2014 by De Gruyter
Articles in the same Issue
- Frontmatter
- Guest Editorial
- Highlight: Membrane transport on the move
- HIGHLIGHT: 9TH TRANSPORT COLLOQUIUM
- Small membrane proteins – elucidating the function of the needle in the haystack
- When two turn into one: evolution of membrane transporters from half modules
- Central role of the Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) in sodium bioenergetics of Vibrio cholerae
- Principles and mechanisms of CD95 activation
- Stitching proteins into membranes, not sew simple
- Cell-free expression of G-protein coupled receptors: new pipelines for challenging targets
- Voltage-dependent anion channels: the wizard of the mitochondrial outer membrane
- Structural characterization of a C-terminally truncated E5 oncoprotein from papillomavirus in lipid bilayers
- Minireview
- Genetic variation within transcriptional regulatory elements and its implications for human disease
- Research Articles/Short Communications
- Molecular Medicine
- Methotrexate-gelonin conjugate – an inhibitor of MCF-7 cells expressing the dihydrofolate receptor
Articles in the same Issue
- Frontmatter
- Guest Editorial
- Highlight: Membrane transport on the move
- HIGHLIGHT: 9TH TRANSPORT COLLOQUIUM
- Small membrane proteins – elucidating the function of the needle in the haystack
- When two turn into one: evolution of membrane transporters from half modules
- Central role of the Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) in sodium bioenergetics of Vibrio cholerae
- Principles and mechanisms of CD95 activation
- Stitching proteins into membranes, not sew simple
- Cell-free expression of G-protein coupled receptors: new pipelines for challenging targets
- Voltage-dependent anion channels: the wizard of the mitochondrial outer membrane
- Structural characterization of a C-terminally truncated E5 oncoprotein from papillomavirus in lipid bilayers
- Minireview
- Genetic variation within transcriptional regulatory elements and its implications for human disease
- Research Articles/Short Communications
- Molecular Medicine
- Methotrexate-gelonin conjugate – an inhibitor of MCF-7 cells expressing the dihydrofolate receptor