Home The amino acids surrounding the flavin 7a-methyl group determine the UVA spectral features of a LOV protein
Article
Licensed
Unlicensed Requires Authentication

The amino acids surrounding the flavin 7a-methyl group determine the UVA spectral features of a LOV protein

  • Sarah Raffelberg , Alexander Gutt , Wolfgang Gärtner , Carmen Mandalari , Stefania Abbruzzetti , Cristiano Viappiani and Aba Losi EMAIL logo
Published/Copyright: July 3, 2013

Abstract

Flavin-binding light, oxygen, and voltage (LOV) domains are UVA/blue-light-sensing protein units that form a reversible flavin mononucleotide-cysteine adduct upon light induction. In their dark-adapted state, LOV domains exhibit the typical spectral features of fully oxidized riboflavin derivatives. A survey on the absorption spectra of various LOV domains revealed that the UVA spectral range is the most variable region (whereas the absorption band at 450 nm is virtually unchanged), showing essentially two distinct patterns found in plant phototropin LOV1 and LOV2 domains, respectively. In this work, we have identified a residue directly interacting with the isoalloxazine methyl group at C(7a) as the major UVA spectral tuner. In YtvA from Bacillus subtilis, this amino acid is threonine 30, and its mutation into apolar residues converts the LOV2-like spectrum of native YtvA into a LOV1-like pattern. Mutation T30A also accelerates the photocycle ca. 4-fold. Together with control mutations at different positions, our results experimentally confirm the previously calculated direction of the transition dipole moment for the UVA ππ* state and identify the mechanisms underlying spectral tuning in the LOV domains.


Corresponding author: Aba Losi, Department of Physics and Earth Sciences, University of Parma (www.unipr.it), Viale G.P. Usberti 7/A, I-43124, Parma, Italy, e-mail:

S.R. is a recipient of a PhD student grant from the ‘Biostruct’ program of the Heinrich-Heine-University Düsseldorf. This work has been partially supported by the Vigoni program (to A.L. and W.G.) and the University of Parma (fellowship to C.M.). We thank Francesca Pennacchietti for the solvatochromic data on FMN reported within the supplementary material.

References

Abbruzzetti, S., Viappiani, C., Murgida, D.H., Erra-Balsells, R., and Bilmes, G.M. (1999). Non-toxic, water-soluble photocalorimetric reference compounds for UV and visible excitation. Chem. Phys. Lett. 304, 167–172.10.1016/S0009-2614(99)00306-1Search in Google Scholar

Avila-Perez, M., Hellingwerf, K.J., and Kort, R. (2006). Blue light activates the sigmaB-dependent stress response of Bacillus subtilis via YtvA. J. Bacteriol. 188, 6411–6414.10.1128/JB.00716-06Search in Google Scholar PubMed PubMed Central

Bauer, C., Rabl, C.R., Heberle, J., and Kottke, T. (2011). Indication for a radical intermediate preceding the signaling state in the LOV domain photocycle. Photochem. Photobiol. 87, 548–553.10.1111/j.1751-1097.2011.00901.xSearch in Google Scholar PubMed

Bonetti, C., Stierl, M., Mathes, T., van Stokkum, I.H.M., Mullen, K.M., Cohen-Stuart, T.A., van Grondelle, R., Hegemann, P., and Kennis, J.T.M. (2009). The role of key amino acids in the photoactivation pathway of the synechocystis Slr1694 BLUF domain. Biochemistry 48, 11458–11469.10.1021/bi901196xSearch in Google Scholar PubMed

Briggs, W.R. and Huala, E. (1999). Blue-light photoreceptors in higher plants. Annu. Rev. Cell. Dev. Biol. 15, 33–62.10.1146/annurev.cellbio.15.1.33Search in Google Scholar PubMed

Brosi, R., Illarionov, B., Mathes, T., Fischer, M., Joshi, M., Bacher, A., Hegemann, P., Bittl, R., Weber, S., and Schleicher, E. (2010). Hindered rotation of a cofactor methyl group as a probe for protein-cofactor interaction. J. Am. Chem. Soc. 132, 8935–8944.10.1021/ja910681zSearch in Google Scholar PubMed

Cao, Z., Buttani, V., Losi, A., and Gärtner, W. (2008). A blue light inducible two component signal transduction system in the plant pathogen Pseudomonas syringae pv. tomato. Biophys. J. 94, 897–905.10.1529/biophysj.107.108977Search in Google Scholar PubMed PubMed Central

Cao, Z., Livoti, E., Losi, A., and Gärtner, W. (2010). A blue light-inducible phosphodiesterase activity in the cyanobacterium Synechococcus elongatus. Photochem. Photobiol. 86, 606–611.10.1111/j.1751-1097.2010.00724.xSearch in Google Scholar PubMed

Chan, R.H., Lewis, J.W., and Bogomolni, R.A. (2013). Photocycle of the LOV-STAS protein from the pathogen Listeria monocytogenes. Photochem. Photobiol. 89, 361–369.10.1111/php.12004Search in Google Scholar PubMed

Christie, J.M., Salomon, M., Nozue, K., Wada, M., and Briggs, W.R. (1999). LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide. Proc. Natl. Acad Sci. USA 96, 8779–8783.10.1073/pnas.96.15.8779Search in Google Scholar PubMed PubMed Central

Christie, J.M., Corchnoy, S.B., Swartz, T.E., Hokenson, M., Han, I.-S., Briggs, W.R., and Bogomolni, R.A. (2007). Steric interactions stabilize the signaling state of the LOV2 domain of phototropin 1. Biochemistry 46, 9310–9319.10.1021/bi700852wSearch in Google Scholar

Climent, T., Gonzalez-Luque, R., Merchan, M., and Serrano-Andres, L. (2006). Theoretical insight into the spectroscopy and photochemistry of isoalloxazine, the flavin core ring. J. Phys. Chem. A 110, 13584–13590.10.1021/jp065772hSearch in Google Scholar

Djouani-Tahri, E.B., Christie, J.M., Sanchez-Ferandin, S., Sanchez, F., Bouget, F.Y., and Corellou, F. (2011). A eukaryotic LOV-histidine kinase with circadian clock function in the picoalga Ostreococcus. Plant J. 65, 578–588.10.1111/j.1365-313X.2010.04444.xSearch in Google Scholar

Fedorov, R., Schlichting, I., Hartmann, E., Domratcheva, T., Fuhrmann, M., and Hegemann, P. (2003). Crystal structures and molecular mechanism of a light-induced signaling switch: the Phot-LOV1 domain from Chlamydomonas reinhardtii. Biophys. J. 84, 2492–2501.10.1016/S0006-3495(03)75052-8Search in Google Scholar

Gaidenko, T.A., Kim, T.J., Weigel, A.L., Brody, M.S., and Price, C.W. (2006). The blue-light receptor YtvA acts in the environmental stress signaling pathway of Bacillus subtilis. J. Bacteriol. 188, 6387–6395.10.1128/JB.00691-06Search in Google Scholar

Gauden, M., Crosson, S., van Stokkum, I.H.M., van Grondelle, R., Moffat, K., and Kennis, J.T.M. (2004). Low-temperature and time-resolved spectroscopic characterization of the LOV2 domain of Avena sativa phototropin. In: Femtosecond Laser Applications in Biology, S. Avrilleir and J.M. Tualle, eds. (Bellingham, WA: SPIE), 5463, pp. 97–104.Search in Google Scholar

Hendrischk, A.K., Moldt, J., Fruhwirth, S.W., and Klug, G. (2009). Characterization of an unusual LOV domain protein in the alpha-proteobacterium Rhodobacter sphaeroides. Photochem. Photobiol. 85, 1254–1259.10.1111/j.1751-1097.2009.00554.xSearch in Google Scholar

Holzer, W., Penzkofer, A., Susdorf, T., Alvarez, M., Islam, S., and Hegemann, P. (2004). Absorption and emission spectroscopic characterisation of the LOV2-domain of phot from Chlamydomonas reinhardtii fused to a maltose binding protein. Chem. Phys. 302, 105–118.10.1016/j.chemphys.2004.03.017Search in Google Scholar

Islam, S.D.M., Penzkofer, A., and Hegemann, P. (2003). Quantum yield of triplet formation of riboflavin in aqueous solution and of flavin mononucleotide bound to the LOV1 domain of Phot1 from Chlamydomonas reinhardtii. Chem. Phys. 291, 97–114.10.1016/S0301-0104(03)00187-3Search in Google Scholar

Iwata, T., Nozaki, D., Tokutomi, S., and Kandori, H. (2005). Comparative investigation of the LOV1 and LOV2 domains in Adiantum phytochrome 3. Biochemistry 44, 7427–7434.10.1021/bi047281ySearch in Google Scholar PubMed

Jentzsch, K., Wirtz, A., Circolone, F., Drepper, T., Losi, A., Gärtner, W., Jaeger, K.-E., and Krauss, U. (2009). Mutual exchange of kinetic properties by extended mutagenesis in two short LOV domain proteins from Pseudomonas putida. Biochemistry 48, 10321–10333.10.1021/bi901115zSearch in Google Scholar PubMed

Johansson, L.B., Davidsson, A., Lindblom, G., and Naqvi, K.R. (1979). Electronic transitions in the isoalloxazine ring and orientation of flavins in model membranes studied by polarized light spectroscopy. Biochemistry 18, 4249–4253.10.1021/bi00586a033Search in Google Scholar

Kasahara, M., Swartz, T.E., Olney, M.A., Onodera, A., Mochizuki, N., Fukuzawa, H., Asamizu, E., Tabata, S., Kanegae, H., Takano, M., et al. (2002). Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, rice, and Chlamydomonas reinhardtii. Plant Physiol. 129, 762–773.10.1104/pp.002410Search in Google Scholar

Kennis, J.T.M., van Stokkum, I.H.M., Crosson, S., Gauden, M., Moffat, K., and van Grondelle, R. (2004). The LOV2 domain of phototropin: a reversible photochromic switch. J. Am. Chem. Soc. 126, 4512–4513.10.1021/ja031840rSearch in Google Scholar

Kottke, T., Heberle, J., Dominic H., Dick, B., and Hegemann, P. (2003). Phot-LOV1: photocycle of a blue-light receptor domain from the green alga Chlamydomonas reinhardtii. Biophys. J. 84, 1192–1201.10.1016/S0006-3495(03)74933-9Search in Google Scholar

Krauss, U., Losi, A., Gärtner, W., Jaeger, K.-E., and Eggert, T. (2005). Initial characterization of a blue-light sensing, phototropin-related protein from Pseudomonas putida: a paradigm for an extended LOV construct. Phys. Chem. Chem. Phys. 7, 2229–2236.10.1039/b504554aSearch in Google Scholar PubMed

Losi, A. (2007). Flavin-based blue-light photosensors: a photobiophysics update. Photochem. Photobiol. 83, 1283–1300.10.1111/j.1751-1097.2007.00196.xSearch in Google Scholar PubMed

Losi, A. and Braslavsky, S.E. (2003). The time-resolved thermodynamics of the chromophore-protein interactions in biological photosensors. Learning from photothermal measurements. Phys. Chem. Chem. Phys. 5, 2739–2750.10.1039/B303848CSearch in Google Scholar

Losi, A. and Gärtner, W. (2011). Old chromophores, new photoactivation paradigms, trendy applications: flavins in blue light-sensing photoreceptors. Photochem. Photobiol. 87, 491–510.10.1111/j.1751-1097.2011.00913.xSearch in Google Scholar PubMed

Losi, A. and Gärtner, W. (2012). The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors. Annu. Rev. Plant Biol. 63, 49–72.10.1146/annurev-arplant-042811-105538Search in Google Scholar PubMed

Losi, A., Wegener, A.A., Engelhardt, M., and Braslavsky, S.E. (2001). Enthalpy-entropy compensation in a photocycle: the K to L transition in sensory rhodopsin II from Natronobacterium pharaonis. J. Am. Chem. Soc. 123, 1766–1767.10.1021/ja002677sSearch in Google Scholar PubMed

Losi, A., Polverini, E., Quest, B., and Gärtner, W. (2002). First evidence for phototropin-related blue-light receptors in prokaryotes. Biophys. J. 82, 2627–2634.10.1016/S0006-3495(02)75604-XSearch in Google Scholar

Losi, A., Quest, B., and Gärtner, W. (2003). Listening to the blue: the time-resolved thermodynamics of the bacterial blue-light receptor YtvA and its isolated LOV domain. Photochem. Photobiol. Sci. 2, 759–766.10.1039/B301782FSearch in Google Scholar

Losi, A., Kottke, T., and Hegemann, P. (2004). Recording of blue light-induced energy and volume changes within the wild-type and mutated Phot-LOV1 domain from Chlamydomonas reinhardtii. Biophys. J. 86, 1051–1060.10.1016/S0006-3495(04)74180-6Search in Google Scholar

Losi, A., Gärtner, W., Raffelberg, S., Cella Zanacchi, F., Bianchini, P., Diaspro, A., Mandalari, C., Abbruzzetti, S., and Viappiani, C. (2013). A photochromic bacterial photoreceptor with potential for super-resolution microscopy. Photochem. Photobiol. Sci. 12, 231–235.10.1039/C2PP25254FSearch in Google Scholar PubMed

Mandalari, C., Losi, A., and Gärtner, W. (2013). Distance-tree analysis, distribution and co-presence of bilin- and flavin-binding prokaryotic photoreceptors for visible light. Photochem. Photobiol. Sci. 18, 1144–1157.10.1039/c3pp25404fSearch in Google Scholar PubMed

Möglich, A., Ayers, R.A., and Moffat, K. (2009). Structure and signaling mechanism of per-ARNT-Sim domains. Structure 17, 1282–1294.10.1016/j.str.2009.08.011Search in Google Scholar PubMed PubMed Central

Narikawa, R., Zikihara, K., Okajima, K., Ochiai, Y., Katayama, M., Shichida, Y., Tokutomi, S., and Ikeuchi, M. (2006). Three putative photosensory light, oxygen or voltage (LOV) domains with distinct biochemical properties from the filamentous cyanobacterium Anabaena sp. PCC 7120. Photochem. Photobiol. 82, 1627–1633.10.1111/j.1751-1097.2006.tb09822.xSearch in Google Scholar

Nash, A.I., McNulty, R., Shillito, M.E., Swartz, T.E., Bogomolni, R.A., Luecke, H., and Gardner, K.H. (2011). Structural basis of photosensitivity in a bacterial light-oxygen-voltage/helix-turn-helix (LOV-HTH) DNA-binding protein. Proc. Natl. Acad Sci. USA 108, 9449–9454.10.1073/pnas.1100262108Search in Google Scholar PubMed PubMed Central

Onodera, A., Christie, J.M., Kasahara, M., Mochizuki, N., Asamizu, E., Tabata, S., Fukuzawa, H., Briggs, W.R., and Nagatani, A. (2002). Analysis of phototropin-like gene of Chlamydomonas reinhardtii. Plant Cell Physiol. 43, S230.Search in Google Scholar

Penzkofer, A., Endres, L., Schiereis, T., and Hegemann, P. (2005). Yield of photo-adduct formation of LOV domains from Chlamydomonas reinhardtii by picosecond laser excitation. Chem. Phys. 316, 185–194.10.1016/j.chemphys.2005.05.016Search in Google Scholar

Penzkofer, A., Bansal, A.K., Song, S.H., and Dick, B. (2007). Fluorescence quenching of flavins by reductive agents. Chem. Phys. 336, 14–21.10.1016/j.chemphys.2007.05.009Search in Google Scholar

Purcell, E.B., McDonald, C.A., Palfey, B.A., and Crosson, S. (2010). An analysis of the solution structure and signaling mechanism of LovK, a sensor histidine kinase integrating light and redox signals. Biochemistry 49, 6761–6770.10.1021/bi1006404Search in Google Scholar PubMed PubMed Central

Raffelberg, S., Mansurova, M., Gärtner, W., and Losi, A. (2011). Modulation of the photocycle of a LOV domain photoreceptor by the hydrogen bonding network. J. Am. Chem. Soc. 133, 5346–5356.10.1021/ja1097379Search in Google Scholar PubMed

Rinaldi, J., Gallo, M., Klinke, S., Paris, G., Bonomi, H.R., Bogomolni, R.A., Cicero, D.O., and Goldbaum, F.A. (2012). The β-scaffold of the LOV domain of the Brucella light-activated histidine kinase is a key element for signal transduction. J. Mol. Biol. 420, 112–127.10.1016/j.jmb.2012.04.006Search in Google Scholar PubMed

Rudzki, J.E., Goodman, J.L., and Peters, K.S. (1985). Simultaneous determination of photoreaction dynamics and energetics using pulsed, time resolved photoacoustic calorimetry. J. Am. Chem. Soc. 107, 7849–7854.10.1021/ja00312a007Search in Google Scholar

Salomon, M., Christie, J.M., Knieb, E., Lempert, U., and Briggs, W.R. (2000). Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor phototropin. Biochemistry 39, 9401–9410.10.1021/bi000585+Search in Google Scholar PubMed

Salzmann, S., Tatchen, J., and Marian, C.M. (2008). The photophysics of flavins: what makes the difference between gas phase and aqueous solution? J. Photochem. Photobiol. A Chem. 198, 221–231.10.1016/j.jphotochem.2008.03.015Search in Google Scholar

Sato, Y., Nabeno, M., Iwata, T., Tokutomi, S., Sakurai, M., and Kandori, H. (2007). Heterogeneous environment of the S-H group of Cys966 near the flavin chromophore in the LOV2 domain of Adiantum neochrome1. Biochemistry 46, 10258–10265.10.1021/bi701022vSearch in Google Scholar PubMed

Schwerdtfeger, C. and Linden, H. (2003). VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J. 22, 4846–4855.10.1093/emboj/cdg451Search in Google Scholar PubMed PubMed Central

Song, S.H., Freddolino, P.L., Nash, A.I., Carroll, E.C., Schulten, K., Gardner, K.H., and Larsen, D.S. (2011). Modulating LOV domain photodynamics with a residue alteration outside the chromophore binding site. Biochemistry 50, 2411–2423.10.1021/bi200198xSearch in Google Scholar PubMed PubMed Central

Swartz, T.E., Corchnoy, S.B., Christie, J.M., Lewis, J.W., Szundi, I., Briggs, W.R., and Bogomolni, R.A. (2001). The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin. J. Biol. Chem. 276, 36493–36500.10.1074/jbc.M103114200Search in Google Scholar PubMed

Swartz, T.E., Tseng, T.S., Frederickson, M.A., Paris, G., Comerci, D.J., Rajashekara, G., Kim, J.G., Mudgett, M.B., Splitter, G.A., Ugalde, R.A., et al. (2007). Blue-light-activated histidine kinases: two-component sensors in bacteria. Science 317, 1090–1093.10.1126/science.1144306Search in Google Scholar

Takahashi, F., Yamagata, D., Ishikawa, M., Fukamatsu, Y.,Ogura, Y., Kasahara, M., Kiyosue, T., Kikuyama, M., Wada, M., and Kataoka, H. (2007). AUREOCHROME, a photoreceptor required for photomorphogenesis in stramenopiles. Proc. Natl. Acad. Sci. USA 104, 19625–19630.10.1073/pnas.0707692104Search in Google Scholar

Tang, Y., Cao, Z., Livoti, E., Krauss, U., Jaeger, K.-E., Gärtner, W., and Losi, A. (2010). Interdomain signalling in the blue-light sensing and GTP-binding protein YtvA: a mutagenesis study uncovering the importance of specific protein sites. Photochem. Photobiol. Sci. 9, 47–56.10.1039/B9PP00075ESearch in Google Scholar

Tsentalovich, Y.P., Lopez, J.J., Hore, P.J., and Sagdeev, R.Z. (2002). Mechanisms of reactions of flavin mononucleotide triplet with aromatic amino acids. Spectrochim. Acta A 58, 2043–2050.10.1016/S1386-1425(01)00652-7Search in Google Scholar

van den Berg, P.W., Widengren, J., Hink, M.A., Rigler, R., and Visser, A.G. (2001). Fluorescence correlation spectroscopy of flavins and flavoenzymes: photochemical and photophysical aspects. Spectrochim. Acta A 57, 2135–2144.10.1016/S1386-1425(01)00494-2Search in Google Scholar

Walter, J., Hausmann, S., Drepper, T., Puls, M., Eggert, T., and Dihné, M. (2012). Flavin mononucleotide-based fluorescent proteins function in mammalian cells without oxygen requirement. Plos One 7, e43921.10.1371/journal.pone.0043921Search in Google Scholar PubMed PubMed Central

Zoltowski, B.D., Schwerdtfeger, C., Widom, J., Loros, J.J., Bilwes, A.M., Dunlap, J.C., and Crane, B.R. (2007). Conformational switching in the fungal light sensor Vivid. Science 316, 1054–1057.10.1126/science.1137128Search in Google Scholar PubMed PubMed Central

Zoltowski, B.D., Vaccaro, B., and Crane, B.R. (2009). Mechanism-based tuning of a LOV domain photoreceptor. Nat. Chem. Biol. 5, 827–834.10.1038/nchembio.210Search in Google Scholar PubMed PubMed Central

Received: 2013-4-23
Accepted: 2013-7-1
Published Online: 2013-07-03
Published in Print: 2013-11-01

©2013 by Walter de Gruyter Berlin Boston

Articles in the same Issue

  1. Masthead
  2. Masthead
  3. Guest Editorial
  4. Highlight: NRW Research School BioStruct – Biological Structures in Molecular Medicine and Biotechnology
  5. Highlight: NRW Research School Biostruct – Biological Structures in Molecular Medicine and Biotechnology
  6. Structural features of antiviral DNA cytidine deaminases
  7. Molecular insights into type I secretion systems
  8. Structural comparison of the transport units of type V secretion systems
  9. Rho-kinase: regulation, (dys)function, and inhibition
  10. Role of centrosomal adaptor proteins of the TACC family in the regulation of microtubule dynamics during mitotic cell division
  11. Revisiting Disrupted-in-Schizophrenia 1 as a scaffold protein
  12. Structural snapshot of cyclic nucleotide binding domains from cyclic nucleotide-sensitive ion channels
  13. Full-length Vpu and human CD4(372–433) in phospholipid bilayers as seen by magic angle spinning NMR
  14. Membrane protein stability depends on the concentration of compatible solutes – a single molecule force spectroscopic study
  15. Expression and characterisation of fully posttranslationally modified cellular prion protein in Pichia pastoris
  16. Contribution of distinct platelet integrins to binding, unfolding, and assembly of fibronectin
  17. Shear-related fibrillogenesis of fibronectin
  18. Enzyme-substrate complexes of the quinate/shikimate dehydrogenase from Corynebacterium glutamicum enable new insights in substrate and cofactor binding, specificity, and discrimination
  19. The amino acids surrounding the flavin 7a-methyl group determine the UVA spectral features of a LOV protein
  20. Determinants of the species selectivity of oxazolidinone antibiotics targeting the large ribosomal subunit
  21. NSR from Streptococcus agalactiae confers resistance against nisin and is encoded by a conserved nsr operon
Downloaded on 7.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2013-0163/html?lang=en
Scroll to top button