Home Sox appeal – Sox10 attracts epigenetic and transcriptional regulators in myelinating glia
Article
Licensed
Unlicensed Requires Authentication

Sox appeal – Sox10 attracts epigenetic and transcriptional regulators in myelinating glia

  • Matthias Weider

    Matthias Weider studied biology at the University of Erlangen-Nürnberg, Germany. He received his PhD in 2006 on vitamin-dependent transcriptional regulation in yeast. Since 2008 he is a postdoctoral fellow in the group of Michael Wegner. His current research interests are target genes and interaction partners of Sox10, especially the BAF complex.

    , Simone Reiprich

    Simone Reiprich holds a Diploma in Molecular Medicine. In 2010, she earned her PhD working on the “Impact of Sox E transcription factors on the development of neural crest derivatives”. Since then she is a postdoctoral fellow in the group of Michael Wegner focussing on regulatory networks in the development of glial cells in the nervous system.

    and Michael Wegner

    Michael Wegner studied biology at the Universities of Münster and Würzburg. After obtaining his PhD in 1990, he spent three years as a postdoctoral fellow at the University of California at San Diego before taking up a group leader position at the Centre for Molecular Neurobiology in Hamburg. Since 2000, he is a Professor of Biochemistry and Pathobiochemistry at the University of Erlangen-Nürnberg. His research is centred around the transcriptional regulation of neural development with a special emphasis on Sox proteins.

    EMAIL logo
Published/Copyright: May 20, 2013

Abstract

Sox10 belongs to the Sox family of high-mobility group-box transcription factors. It fulfils widespread and essential functions in myelinating glia at multiple stages of development such as glial specification, survival and terminal differentiation. To a large extent, these diverse activities can be attributed to its capacity to interact with different transcription factors in distinct regulatory networks. Beyond transcription factors, an increasing number of interaction partners are emerging with alternative impact on gene expression. These include components of the mediator complex, the Brahma-associated factor complex and histone deacetylases. Here, we discuss interactions with functional relevance in myelinating glia and link Sox10 function in these cells not only to gene transcription, but also to epigenetics and chromatin remodeling.


Corresponding author: Michael Wegner, Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany, e-mail:

About the authors

Matthias Weider

Matthias Weider studied biology at the University of Erlangen-Nürnberg, Germany. He received his PhD in 2006 on vitamin-dependent transcriptional regulation in yeast. Since 2008 he is a postdoctoral fellow in the group of Michael Wegner. His current research interests are target genes and interaction partners of Sox10, especially the BAF complex.

Simone Reiprich

Simone Reiprich holds a Diploma in Molecular Medicine. In 2010, she earned her PhD working on the “Impact of Sox E transcription factors on the development of neural crest derivatives”. Since then she is a postdoctoral fellow in the group of Michael Wegner focussing on regulatory networks in the development of glial cells in the nervous system.

Michael Wegner

Michael Wegner studied biology at the Universities of Münster and Würzburg. After obtaining his PhD in 1990, he spent three years as a postdoctoral fellow at the University of California at San Diego before taking up a group leader position at the Centre for Molecular Neurobiology in Hamburg. Since 2000, he is a Professor of Biochemistry and Pathobiochemistry at the University of Erlangen-Nürnberg. His research is centred around the transcriptional regulation of neural development with a special emphasis on Sox proteins.

References

Arnett, H.A., Fancy, S.P., Alberta, J.A., Zhao, C., Plant, S.R., Kaing, S., Raine, C.S., Rowitch, D.H., Franklin, R.J., and Stiles, C.D. (2004). bHLH transcription factor Olig1 is required to repair demyelinated lesions in the CNS. Science 306, 2111–2115.10.1126/science.1103709Search in Google Scholar PubMed

Bondurand, N., Pingault, V., Goerich, D.E., Lemort, N., Sock, E., Le Caignec, C., Wegner, M., and Goossens, M. (2000). Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome. Hum. Mol. Genet. 9, 1907–1917.10.1093/hmg/9.13.1907Search in Google Scholar PubMed

Bondurand, N., Girard, M., Pingault, V., Lemort, N., Dubourg, O., and Goossens, M. (2001). Human connexin 32, a gap junction protein altered in the X-linked form of Charcot-Marie-Tooth disease, is directly regulated by the transcription factor SOX10. Hum. Mol. Genet. 10, 2783–2795.10.1093/hmg/10.24.2783Search in Google Scholar PubMed

Borggrefe, T. and Yue, X. (2011). Interactions between subunits of the mediator complex with gene-specific transcription factors. Semin. Cell Dev. Biol. 22, 759–768.10.1016/j.semcdb.2011.07.022Search in Google Scholar PubMed

Bowles, J., Schepers, G., and Koopman, P. (2000). Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev. Biol. 227, 239–255.10.1006/dbio.2000.9883Search in Google Scholar PubMed

Bremer, M., Fröb, F., Kichko, T., Reeh, P., Tamm, E.R., Suter, U., and Wegner, M. (2011). Sox10 is required for Schwann-cell homeostasis and myelin maintenance in the adult peripheral nerve. Glia 59, 1022–1032.10.1002/glia.21173Search in Google Scholar PubMed

Britsch, S., Goerich, D.E., Riethmacher, D., Peirano, R.I., Rossner, M., Nave, K.A., Birchmeier, C., and Wegner, M. (2001). The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev. 15, 66–78.10.1101/gad.186601Search in Google Scholar PubMed PubMed Central

Chen, Y., Wang, H., Yoon, S.O., Xu, X., Hottiger, M.O., Svaren, J., Nave, K.A., Kim, H.A., Olson, E.N., Lu, Q.R., et al. (2011). HDAC-mediated deacetylation of NF-kappaB is critical for Schwann cell myelination. Nat. Neurosci. 14, 437–441.10.1038/nn.2780Search in Google Scholar PubMed PubMed Central

Cunliffe, V.T. and Casaccia-Bonnefil, P. (2006). Histone deacetylase 1 is essential for oligodendrocyte specification in the zebrafish CNS. Mech. Dev. 123, 24–30.10.1016/j.mod.2005.10.005Search in Google Scholar PubMed

Debril, M.B., Gelman, L., Fayard, E., Annicotte, J.S., Rocchi, S., and Auwerx, J. (2004). Transcription factors and nuclear receptors interact with the SWI/SNF complex through the BAF60c subunit. J. Biol. Chem. 279, 16677–16686.10.1074/jbc.M312288200Search in Google Scholar PubMed

Doddrell, R.D., Dun, X.P., Moate, R.M., Jessen, K.R., Mirsky, R., and Parkinson, D.B. (2012). Regulation of Schwann cell differentiation and proliferation by the Pax-3 transcription factor. Glia 60, 1269–1278.10.1002/glia.22346Search in Google Scholar PubMed PubMed Central

Emery, B., Agalliu, D., Cahoy, J.D., Watkins, T.A., Dugas, J.C., Mulinyawe, S.B., Ibrahim, A., Ligon, K.L., Rowitch, D.H., and Barres, B.A. (2009). Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell 138, 172–185.10.1016/j.cell.2009.04.031Search in Google Scholar PubMed PubMed Central

Finzsch, M., Stolt, C.C., Lommes, P., and Wegner, M. (2008). Sox9 and Sox10 influence survival and migration of oligodendrocyte precursors in the spinal cord by regulating PDGF receptor alpha expression. Development 135, 637–646.10.1242/dev.010454Search in Google Scholar PubMed

Finzsch, M., Schreiner, S., Kichko, T., Reeh, P., Tamm, E.R., Bösl, M.R., Meijer, D., and Wegner, M. (2010). Sox10 is required for Schwann cell identity and progression beyond the immature Schwann cell stage. J. Cell Biol 189, 701–712.10.1083/jcb.200912142Search in Google Scholar PubMed PubMed Central

Fröb, F., Bremer, M., Finzsch, M., Kichko, T., Reeh, P., Tamm, E.R., Charnay, P., and Wegner, M. (2012). Establishment of myelinating Schwann cells and barrier integrity between central and peripheral nervous systems depend on Sox10. Glia 60, 806–819.10.1002/glia.22310Search in Google Scholar PubMed

Ghislain, J. and Charnay, P. (2006). Control of myelination in Schwann cells: a Krox20 cis-regulatory element integrates Oct6, Brn2 and Sox10 activities. EMBO Rep. 7, 52–58.10.1038/sj.embor.7400573Search in Google Scholar PubMed PubMed Central

Ghislain, J., Desmarquet-Trin-Dinh, C., Jaegle, M., Meijer, D., Charnay, P., and Frain, M. (2002). Characterisation of cis-acting sequences reveals a biphasic, axon-dependent regulation of Krox20 during Schwann cell development. Development 129, 155–166.10.1242/dev.129.1.155Search in Google Scholar PubMed

Gokey, N.G., Srinivasan, R., Lopez-Anido, C., Krueger, C., and Svaren, J. (2012). Developmental regulation of microRNA expression in Schwann cells. Mol. Cell. Biol. 32, 558–568.10.1128/MCB.06270-11Search in Google Scholar PubMed PubMed Central

Haberland, M., Montgomery, R.L., and Olson, E.N. (2009). The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 10, 32–42.10.1038/nrg2485Search in Google Scholar PubMed PubMed Central

Harley, V.R., Lovell-Badge, R., and Goodfellow, P.N. (1994). Definition of a consensus DNA binding site for SRY. Nucl Acids Res. 22, 1500–1501.10.1093/nar/22.8.1500Search in Google Scholar PubMed PubMed Central

Herbarth, B., Pingault, V., Bondurand, N., Kuhlbrodt, K., Hermans-Borgmeyer, I., Puliti, A., Lemort, N., Goossens, M., and Wegner, M. (1998). Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease. Proc. Natl. Acad. Sci. USA 95, 5161–5165.10.1073/pnas.95.9.5161Search in Google Scholar PubMed PubMed Central

Ho, L. and Crabtree, G.R. (2010). Chromatin remodelling during development. Nature 463, 474–484.10.1038/nature08911Search in Google Scholar PubMed PubMed Central

Ho, L., Ronan, J.L., Wu, J., Staahl, B.T., Chen, L., Kuo, A., Lessard, J., Nesvizhskii, A.I., Ranish, J., and Crabtree, G.R. (2009). An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc. Natl. Acad. Sci. USA 106, 5181–5186.10.1073/pnas.0812889106Search in Google Scholar PubMed PubMed Central

Hsiao, P.W., Fryer, C.J., Trotter, K.W., Wang, W., and Archer, T.K. (2003). BAF60a mediates critical interactions between nuclear receptors and the BRG1 chromatin-remodeling complex for transactivation. Mol. Cell. Biol. 23, 6210–6220.10.1128/MCB.23.17.6210-6220.2003Search in Google Scholar PubMed PubMed Central

Ito, T., Yamauchi, M., Nishina, M., Yamamichi, N., Mizutani, T., Ui, M., Murakami, M., and Iba, H. (2001). Identification of SWI.SNF complex subunit BAF60a as a determinant of the transactivation potential of Fos/Jun dimers. J. Biol. Chem. 276, 2852–2857.10.1074/jbc.M009633200Search in Google Scholar PubMed

Iwamoto, K., Bundo, M., Yamada, K., Takao, H., Iwayama-Shigeno, Y., Yoshikawa, T., and Kato, T. (2005). DNA methylation status of SOX10 correlates with its downregulation and oligodendrocyte dysfunction in schizophrenia. J. Neurosci. 25, 5376–5381.10.1523/JNEUROSCI.0766-05.2005Search in Google Scholar PubMed PubMed Central

Jacob, C., Christen, C.N., Pereira, J.A., Somandin, C., Baggiolini, A., Lotscher, P., Ozcelik, M., Tricaud, N., Meijer, D., Yamaguchi, T., et al. (2011). HDAC1 and HDAC2 control the transcriptional program of myelination and the survival of Schwann cells. Nat. Neurosci. 14, 429–436.10.1038/nn.2762Search in Google Scholar PubMed

Jaegle, M., Ghazvini, M., Mandemakers, W., Piirsoo, M., Driegen, S., Levavasseur, F., Raghoenath, S., Grosveld, F., and Meijer, D. (2003). The POU proteins Brn-2 and Oct-6 share important functions in Schwann cell development. Genes Dev. 17, 1380–1391.10.1101/gad.258203Search in Google Scholar PubMed PubMed Central

Jagalur, N.B., Ghazvini, M., Mandemakers, W., Driegen, S., Maas, A., Jones, E.A., Jaegle, M., Grosveld, F., Svaren, J., and Meijer, D. (2011). Functional dissection of the Oct6 Schwann cell enhancer reveals an essential role for dimeric Sox10 binding. J. Neurosci. 31, 8585–8594.10.1523/JNEUROSCI.0659-11.2011Search in Google Scholar PubMed PubMed Central

Jang, S.W. and Svaren, J. (2009). Induction of myelin protein zero by early growth response 2 through upstream and intragenic elements. J. Biol. Chem. 284, 20111–20120.10.1074/jbc.M109.022426Search in Google Scholar PubMed PubMed Central

Jang, S.W., LeBlanc, S.E., Roopra, A., Wrabetz, L., and Svaren, J. (2006). In vivo detection of Egr2 binding to target genes during peripheral nerve myelination. J. Neurochem. 98, 1678–1687.10.1111/j.1471-4159.2006.04069.xSearch in Google Scholar PubMed

Jang, S.W., Srinivasan, R., Jones, E.A., Sun, G., Keles, S., Krueger, C., Chang, L.W., Nagarajan, R., and Svaren, J. (2010). Locus-wide identification of Egr2/Krox20 regulatory targets in myelin genes. J. Neurochem. 115, 1409–1420.10.1111/j.1471-4159.2010.07045.xSearch in Google Scholar PubMed PubMed Central

Jessen, K.R. and Mirsky, R. (2005). The origin and development of glial cells in peripheral nerves. Nat. Rev. Neurosci. 6, 671–682.10.1038/nrn1746Search in Google Scholar PubMed

Jones, E.A., Lopez-Anido, C., Srinivasan, R., Krueger, C., Chang, L.W., Nagarajan, R., and Svaren, J. (2011). Regulation of the PMP22 gene through an intronic enhancer. J. Neurosci. 31, 4242–4250.10.1523/JNEUROSCI.5893-10.2011Search in Google Scholar PubMed PubMed Central

Kamachi, Y., Uchikawa, M., and Kondoh, H. (2000). Pairing SOX off: with partners in the regulation of embryonic development. Trends Genet. 16, 182–187.10.1016/S0168-9525(99)01955-1Search in Google Scholar PubMed

Kao, S.C., Wu, H., Xie, J., Chang, C.P., Ranish, J.A., Graef, I.A., and Crabtree, G.R. (2009). Calcineurin/NFAT signaling is required for neuregulin-regulated Schwann cell differentiation. Science 323, 651–654.10.1126/science.1166562Search in Google Scholar PubMed PubMed Central

Kellerer, S., Schreiner, S., Stolt, C.C., Scholz, S., Bösl, M.R., and Wegner, M. (2006). Replacement of the Sox10 transcription factor by Sox8 reveals incomplete functional equivalence. Development 133, 2875–2886.10.1242/dev.02477Search in Google Scholar PubMed

Kioussi, C., Gross, M.K., and Gruss, P. (1995). Pax3: a paired domain gene as a regulator in PNS myelination. Neuron 15, 553–562.10.1016/0896-6273(95)90144-2Search in Google Scholar PubMed

Kuhlbrodt, K., Herbarth, B., Sock, E., Hermans-Borgmeyer, I., and Wegner, M. (1998). Sox10, a novel transcriptional modulator in glial cells. J. Neurosci. 18, 237–250.10.1523/JNEUROSCI.18-01-00237.1998Search in Google Scholar PubMed PubMed Central

Küspert, M., Hammer, A., Bösl, M.R., and Wegner, M. (2011). Olig2 regulates Sox10 expression in oligodendrocyte precursors through an evolutionary conserved distal enhancer. Nucl. Acids Res. 39, 1280–1293.10.1093/nar/gkq951Search in Google Scholar PubMed PubMed Central

Lang, D. and Epstein, J.A. (2003). Sox10 and Pax3 physically interact to mediate activation of a conserved c-RET enhancer. Hum. Mol. Genet. 12, 937–945.10.1093/hmg/ddg107Search in Google Scholar PubMed

LeBlanc, S.E., Ward, R.M., and Svaren, J. (2007). Neuropathy-associated Egr2 mutants disrupt cooperative activation of myelin protein zero by Egr2 and Sox10. Mol. Cell. Biol. 27, 3521–3529.10.1128/MCB.01689-06Search in Google Scholar PubMed PubMed Central

Lessard, J., Wu, J.I., Ranish, J.A., Wan, M., Winslow, M.M., Staahl, B.T., Wu, H., Aebersold, R., Graef, I.A., and Crabtree, G.R. (2007). An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55, 201–215.10.1016/j.neuron.2007.06.019Search in Google Scholar PubMed PubMed Central

Li, H., Lu, Y., Smith, H.K., and Richardson, W.D. (2007). Olig1 and Sox10 interact synergistically to drive myelin basic protein transcription in oligodendrocytes. J. Neurosci. 27, 14375–14382.10.1523/JNEUROSCI.4456-07.2007Search in Google Scholar PubMed PubMed Central

Liu, A., Li, J., Marin-Husstege, M., Kageyama, R., Fan, Y., Gelinas, C., and Casaccia-Bonnefil, P. (2006). A molecular insight of Hes5-dependent inhibition of myelin gene expression: old partners and new players. EMBO J. 25, 4833–4842.10.1038/sj.emboj.7601352Search in Google Scholar PubMed PubMed Central

Lu, Q.R., Sun, T., Zhu, Z., Ma, N., Garcia, M., Stiles, C.D., and Rowitch, D.H. (2002). Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109, 75–86.10.1016/S0092-8674(02)00678-5Search in Google Scholar PubMed

Malik, S. and Roeder, R.G. (2010). The metazoan mediator co-activator complex as an integrative hub for transcriptional regulation. Nat. Rev. Genet. 11, 761–772.10.1038/nrg2901Search in Google Scholar PubMed PubMed Central

Nagarajan, R., Svaren, J., Le, N., Araki, T., Watson, M., and Milbrandt, J. (2001). EGR2 mutations in inherited neuropathies dominant-negatively inhibit myelin gene expression. Neuron 30, 355–368.10.1016/S0896-6273(01)00282-3Search in Google Scholar PubMed

Nickols, J.C., Valentine, W., Kanwal, S., and Carter, B.D. (2003). Activation of the transcription factor NF-kappaB in Schwann cells is required for peripheral myelin formation. Nat. Neurosci. 6, 161–167.10.1038/nn995Search in Google Scholar PubMed

Nusinzon, I. and Horvath, C.M. (2005). Histone deacetylases as transcriptional activators? Role reversal in inducible gene regulation. Sci STKE 2005, re11.10.1126/stke.2962005re11Search in Google Scholar PubMed

Oh, J., Sohn, D.H., Ko, M., Chung, H., Jeon, S.H., and Seong, R.H. (2008). BAF60a interacts with p53 to recruit the SWI/SNF complex. J. Biol. Chem. 283, 11924–11934.10.1074/jbc.M705401200Search in Google Scholar PubMed

Parkinson, D.B., Bhaskaran, A., Arthur-Farraj, P., Noon, L.A., Woodhoo, A., Lloyd, A.C., Feltri, M.L., Wrabetz, L., Behrens, A., Mirsky, R., et al. (2008). c-Jun is a negative regulator of myelination. J. Cell Biol. 181, 625–637.10.1083/jcb.200803013Search in Google Scholar PubMed PubMed Central

Peirano, R.I. and Wegner, M. (2000). The glial transcription factor Sox10 binds to DNA both as monomer and dimer with different functional consequences. Nucl. Acids Res. 28, 3047–3055.10.1093/nar/28.16.3047Search in Google Scholar PubMed PubMed Central

Peirano, R.I., Goerich, D.E., Riethmacher, D., and Wegner, M. (2000). Protein zero gene expression is regulated by the glial transcription factor Sox10. Mol. Cell. Biol. 20, 3198–3209.10.1128/MCB.20.9.3198-3209.2000Search in Google Scholar PubMed PubMed Central

Rau, M.J., Fischer, S., and Neumann, C.J. (2006). Zebrafish Trap230/Med12 is required as a coactivator for Sox9-dependent neural crest, cartilage and ear development. Dev. Biol. 296, 83–93.10.1016/j.ydbio.2006.04.437Search in Google Scholar PubMed

Reiprich, S., Stolt, C.C., Schreiner, S., Parlato, R., and Wegner, M. (2008). SoxE proteins are differentially required in mouse adrenal gland development. Mol. Biol. Cell 19, 1575–1586.10.1091/mbc.e07-08-0782Search in Google Scholar PubMed PubMed Central

Reiprich, S., Kriesch, J., Schreiner, S., and Wegner, M. (2010). Activation of Krox20 gene expression by Sox10 in myelinating Schwann cells. J. Neurochem. 112, 744–754.10.1111/j.1471-4159.2009.06498.xSearch in Google Scholar PubMed

Saha, A., Wittmeyer, J., and Cairns, B.R. (2006). Chromatin remodelling: the industrial revolution of DNA around histones. Nat. Rev. 7, 437–447.10.1038/nrm1945Search in Google Scholar PubMed

Schlierf, B., Ludwig, A., Klenovsek, K., and Wegner, M. (2002). Cooperative binding of Sox10 to DNA: requirements and consequences. Nucl. Acids Res. 30, 5509–5516.10.1093/nar/gkf690Search in Google Scholar PubMed PubMed Central

Schlierf, B., Werner, T., Glaser, G., and Wegner, M. (2006). Expression of connexin47 in oligodendrocytes is regulated by the Sox10 transcription factor. J. Mol. Biol. 361, 11–21.10.1016/j.jmb.2006.05.072Search in Google Scholar PubMed

Schreiner, S., Cossais, F., Fischer, K., Scholz, S., Bösl, M.R., Holtmann, B., Sendtner, M., and Wegner, M. (2007). Hypomorphic Sox10 alleles reveal novel protein functions and unravel developmental differences in glial lineages. Development 134, 3271–3281.10.1242/dev.003350Search in Google Scholar PubMed

Shahbazian, M.D. and Grunstein, M. (2007). Functions of site-specific histone acetylation and deacetylation. Ann. Rev. Biochem. 76, 75–100.10.1146/annurev.biochem.76.052705.162114Search in Google Scholar PubMed

Southard-Smith, E.M., Kos, L., and Pavan, W.J. (1998). Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat. Genet. 18, 60–64.10.1038/ng0198-60Search in Google Scholar PubMed

Stolt, C.C. and Wegner, M. (2010). SoxE function in vertebrate nervous system development. Int. J. Biochem. Cell Biol. 42, 437–440.10.1016/j.biocel.2009.07.014Search in Google Scholar PubMed

Stolt, C.C., Rehberg, S., Ader, M., Lommes, P., Riethmacher, D., Schachner, M., Bartsch, U., and Wegner, M. (2002). Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev. 16, 165–170.10.1101/gad.215802Search in Google Scholar PubMed PubMed Central

Stolt, C.C., Lommes, P., Friedrich, R.P., and Wegner, M. (2004). Transcription factors Sox8 and Sox10 perform non-equivalent roles during oligodendrocyte development despite functional redundancy. Development 131, 2349–2358.10.1242/dev.01114Search in Google Scholar PubMed

Stolt, C.C., Schmitt, S., Lommes, P., Sock, E., and Wegner, M. (2005). Impact of transcription factor Sox8 on oligodendrocyte specification in the mouse embryonic spinal cord. Dev. Biol. 281, 309–317.10.1016/j.ydbio.2005.03.010Search in Google Scholar PubMed

Stolt, C.C., Schlierf, A., Lommes, P., Hillgärtner, S., Werner, T., Kosian, T., Sock, E., Kessaris, N., Richardson, W.D., Lefebvre, V., et al. (2006). SoxD proteins influence multiple stages of oligodendrocyte development and modulate SoxE protein function. Dev. Cell 11, 697–709.10.1016/j.devcel.2006.08.011Search in Google Scholar PubMed

Svaren, J. and Meijer, D. (2008). The molecular machinery of myelin gene transcription in Schwann cells. Glia 56, 1541–1551.10.1002/glia.20767Search in Google Scholar PubMed PubMed Central

Topilko, P., Schneider-Maunoury, S., Levi, G., Baron-Van Evercooren, A., Chennoufi, A.B., Seitanidou, T., Babinet, C., and Charnay, P. (1994). Krox-20 controls myelination in the peripheral nervous system. Nature 371, 796–799.10.1038/371796a0Search in Google Scholar PubMed

Vogl, M.R., Reiprich, S., Küspert, M., Kosian, T., Schrewe, H., Nave, K.A., and Wegner, M. (2013). Sox10 cooperates with the mediator subunit 12 during terminal differentiation of myelinating glia. J. Neurosci. 33, 6679–6690.10.1523/JNEUROSCI.5178-12.2013Search in Google Scholar PubMed PubMed Central

Wahlbuhl, M., Reiprich, S., Vogl, M.R., Bösl, M.R., and Wegner, M. (2011). Transcription factor Sox10 orchestrates activity of a neural crest-specific enhancer in the vicinity of its gene. Nucl. Acids Res. 40, 88–101.10.1093/nar/gkr734Search in Google Scholar PubMed PubMed Central

Wegner, M. (1999). From head to toes: the multiple facets of Sox proteins. Nucl. Acids Res. 27, 1409–1420.10.1093/nar/27.6.1409Search in Google Scholar PubMed PubMed Central

Wegner, M. (2005). Secrets to a healthy Sox life: lessons for melanocytes. Pigment Cell Res. 18, 74–85.10.1111/j.1600-0749.2005.00218.xSearch in Google Scholar PubMed

Wei, Q., Miskimins, W.K., and Miskimins, R. (2004). Sox10 acts as a tissue-specific transcription factor enhancing activation of the myelin basic protein gene promoter by p27Kip1 and Sp1. J. Neurosci. Res. 78, 796–802.10.1002/jnr.20342Search in Google Scholar PubMed

Weider, M., Küspert, M., Bischof, M., Vogl, M.R., Hornig, J., Loy, K., Kosian, T., Müller, J., Hillgärtner, S., Tamm, E.R., et al. (2012). Chromatin-remodeling factor Brg1 is required for Schwann cell differentiation and myelination. Dev. Cell 23, 193–201.10.1016/j.devcel.2012.05.017Search in Google Scholar PubMed

Werner, M.H., Huth, J.R., Gronenborn, A.M., and Clore, G.M. (1995). Molecular basis of human 46X,Y sex reversal revealed from the three-dimensional solution structure of the human SRY-DNA complex. Cell 81, 705–714.10.1016/0092-8674(95)90532-4Search in Google Scholar PubMed

Wilson, B.G. and Roberts, C.W. (2011). SWI/SNF nucleosome remodellers and cancer. Nat. Rev. Cancer 11, 481–492.10.1038/nrc3068Search in Google Scholar PubMed

Wißmüller, S., Kosian, T., Wolf, M., Finzsch, M., and Wegner, M. (2006). The high-mobility-group domain of Sox proteins interacts with DNA-binding domains of many transcription factors. Nucl. Acids Res. 34, 1735–1744.10.1093/nar/gkl105Search in Google Scholar PubMed PubMed Central

Wu, J.I., Lessard, J., Olave, I.A., Qiu, Z., Ghosh, A., Graef, I.A., and Crabtree, G.R. (2007). Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron 56, 94–108.10.1016/j.neuron.2007.08.021Search in Google Scholar PubMed

Xin, M., Yue, T., Ma, Z., Wu, F.F., Gow, A., and Lu, Q.R. (2005). Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice. J. Neurosci. 25, 1354–1365.10.1523/JNEUROSCI.3034-04.2005Search in Google Scholar PubMed PubMed Central

Zhou, Q. and Anderson, D.J. (2002). The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109, 61–73.10.1016/S0092-8674(02)00677-3Search in Google Scholar

Zhou, Q., Wang, S., and Anderson, D.J. (2000). Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron 25, 331–343.10.1016/S0896-6273(00)80898-3Search in Google Scholar

Zupkovitz, G., Tischler, J., Posch, M., Sadzak, I., Ramsauer, K., Egger, G., Grausenburger, R., Schweifer, N., Chiocca, S., Decker, T., et al. (2006). Negative and positive regulation of gene expression by mouse histone deacetylase 1. Mol. Cell. Biol. 26, 7913–7928.10.1128/MCB.01220-06Search in Google Scholar PubMed PubMed Central

Received: 2013-3-8
Accepted: 2013-5-15
Published Online: 2013-05-20
Published in Print: 2013-12-01

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2013-0146/html?lang=en
Scroll to top button