Home Life Sciences The Staphylococcus aureus leucine aminopeptidase is localized to the bacterial cytosol and demonstrates a broad substrate range that extends beyond leucine
Article
Licensed
Unlicensed Requires Authentication

The Staphylococcus aureus leucine aminopeptidase is localized to the bacterial cytosol and demonstrates a broad substrate range that extends beyond leucine

  • Ronan K. Carroll , Florian Veillard , Danielle T. Gagne , Jarrod M. Lindenmuth , Marcin Poreba , Marcin Drag , Jan Potempa and Lindsey N. Shaw EMAIL logo
Published/Copyright: December 14, 2012

Abstract

Staphylococcus aureus is a potent pathogen of humans exhibiting a broad disease range, in part due to an extensive repertoire of secreted virulence factors, including proteases. Recently, we identified the first example of an intracellular protease (leucine aminopeptidase, LAP) that is required for virulence in S. aureus. Disruption of pepZ, the gene encoding LAP, had no affect on the growth rate of bacteria; however, in systemic and localized infection models the pepZ mutant had significantly attenuated virulence. Recently, a contradictory report was published suggesting that LAP is an extracellular enzyme and it is required for growth in S. aureus. Here, we investigate these results and confirm our previous findings that LAP is localized to the bacterial cytosol and is not required for growth. In addition, we conduct a biochemical investigation of purified recombinant LAP, identifying optimal conditions for enzymatic activity and substrate preference for hydrolysis. Our results show that LAP has a broad substrate range, including activity against the dipeptide cysteine-glycine, and that leucine is not the primary target of LAP.


Corresponding author: Lindsey N. Shaw, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA

This study was supported in part by grants AI080626 (LNS) and DE09761 (JP) from the National Institutes of Health, and by grants to JP from the National Science Center (2011)/01/B/NZ6/00268, Kraków, Poland), and the Foundation for Polish Science (TEAM project DPS/424-329/10). The Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University is a beneficiary of structural funds from the European Union (POIG.02.01.00-12-064/08).

References

Booth, I.R. (1985). Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49, 359–378.10.1128/mr.49.4.359-378.1985Search in Google Scholar PubMed PubMed Central

Cappiello, M., Lazzarotti, A., Buono, F., Scaloni, A., D’Ambrosio, C., Amodeo, P., Mendez, B.L., Pelosi, P., Del Corso, A., and Mura, U. (2004). New role for leucyl aminopeptidase in glutathione turnover. Biochem. J. 378, 35–44.10.1042/bj20031336Search in Google Scholar PubMed PubMed Central

Cappiello, M., Alterio, V., Amodeo, P., Del Corso, A., Scaloni, A., Pedone, C., Moschini, R., De Donatis, G.M., De Simone, G., and Mura, U. (2006). Metal ion substitution in the catalytic site greatly affects the binding of sulfhydryl-containing compounds to leucyl aminopeptidase. Biochemistry 45, 3226–3234.10.1021/bi052069vSearch in Google Scholar PubMed

Carroll, R.K., Robison, T.M., Rivera, F.E., Davenport, J.E., Jonsson, I.M., Florczyk, D., Tarkowski, A., Potempa, J., Koziel, J., and Shaw, L.N. (2012). Identification of an intracellular M17 family leucine aminopeptidase that is required for virulence in Staphylococcus aureus. Microbes Infect. 14, 989–999.10.1016/j.micinf.2012.04.013Search in Google Scholar PubMed PubMed Central

Chu, L., Lai, Y., Xu, X., Eddy, S., Yang, S., Song, L., and Kolodrubetz, D. (2008). A 52-kDa leucyl aminopeptidase from treponema denticola is a cysteinylglycinase that mediates the second step of glutathione metabolism. J. Biol. Chem. 283, 19351–19358.10.1074/jbc.M801034200Search in Google Scholar PubMed PubMed Central

Cotter, P.D. and Hill, C. (2003). Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 67, 429–453.10.1128/MMBR.67.3.429-453.2003Search in Google Scholar PubMed PubMed Central

Dalal, S. and Klemba, M. (2007). Roles for two aminopeptidases in vacuolar hemoglobin catabolism in Plasmodium falciparum. J. Biol. Chem. 282, 35978–35987.10.1074/jbc.M703643200Search in Google Scholar PubMed

Diep, B.A., Gill, S.R., Chang, R.F., Phan, T.H., Chen, J.H., Davidson, M.G., Lin, F., Lin, J., Carleton, H.A., Mongodin E.F., et al. (2006). Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 367, 731–739.10.1016/S0140-6736(06)68231-7Search in Google Scholar PubMed

Dong, L., Cheng, N., Wang, M.W., Zhang, J., Shu, C., and Zhu, D.X. (2005). The leucyl aminopeptidase from Helicobacter pylori is an allosteric enzyme. Microbiology 151, 2017–2023.10.1099/mic.0.27767-0Search in Google Scholar PubMed

Drag, M., Bogyo, M., Ellman, J.A., and Salvesen, G.S. (2010). Aminopeptidase fingerprints, an integrated approach for identification of good substrates and optimal inhibitors. J. Biol. Chem. 285, 3310–3318.10.1074/jbc.M109.060418Search in Google Scholar PubMed PubMed Central

Gaitonde, M.K. (1967). A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem. J. 104, 627–633.10.1042/bj1040627Search in Google Scholar PubMed PubMed Central

Hood, M.I. and Skaar, E.P. (2012). Nutritional immunity: transition metals at the pathogen-host interface. Nature reviews. Microbiology 10, 525–537.10.1038/nrmicro2836Search in Google Scholar PubMed PubMed Central

Jia, H., Terkawi, M.A., Aboge, G.O., Goo, Y.K., Luo, Y., Li, Y., Yamagishi, J., Nishikawa, Y., Igarashi, I., Sugimoto, C. et al. (2009). Characterization of a leucine aminopeptidase of Babesia gibsoni. Parasitology 136, 945–952.10.1017/S0031182009006398Search in Google Scholar PubMed

Kantyka, T., Shaw L.N., and Potempa, J. (2011). Papain-like proteases of Staphylococcus aureus. Adv. Exp. Med. Biol. 712, 1–14.10.1007/978-1-4419-8414-2_1Search in Google Scholar PubMed

Kashket, E.R. (1981). Proton motive force in growing Streptococcus lactis and Staphylococcus aureus cells under aerobic and anaerobic conditions. J. Bacteriol. 146, 369–376.10.1128/jb.146.1.369-376.1981Search in Google Scholar PubMed PubMed Central

Kasperkiewicz, P., Gajda A.D., and Drag, M. (2012). Current and prospective applications of non-proteinogenic amino acids in profiling of proteases substrate specificity. Biol. Chem. 393, 843–851.10.1515/hsz-2012-0167Search in Google Scholar PubMed

Kehl-Fie, T.E., Chitayat, S., Hood, M.I., Damo, S., Restrepo, N., Garcia, C., Munro, K.A., Chazin W.J., and Skaar, E.P. (2011). Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus. Cell Host. Microbe. 10, 158–164.10.1016/j.chom.2011.07.004Search in Google Scholar PubMed PubMed Central

Kim, H. and Lipscomb, W.N. (1993). Differentiation and identification of the two catalytic metal binding sites in bovine lens leucine aminopeptidase by X-ray crystallography. Proc. Natl. Acad. Sci. USA 90, 5006–5010.10.1073/pnas.90.11.5006Search in Google Scholar PubMed PubMed Central

Kolar, S.L., Nagarajan, V., Oszmiana, A., Rivera, F.E., Miller, H.K., Davenport, J.E., Riordan, J.T., Potempa, J., Barber, D.S., Koziel, J., et al. (2011). NsaRS is a cell-envelope-stress-sensing two-component system of Staphylococcus aureus. Microbiology 157, 2206–2219.10.1099/mic.0.049692-0Search in Google Scholar PubMed PubMed Central

Lin, L.L., Hsu, W.H., Wu, C.P., Chi, M.C., Chou, W.M., and Hu, H.Y. (2004). A thermostable leucine aminopeptidase from Bacillus kaustophilus CCRC 11223. Extremophiles 8, 79–87.10.1007/s00792-003-0364-1Search in Google Scholar PubMed

Masip, L., Veeravalli, K., and Georgiou, G. (2006). The many faces of glutathione in bacteria. Antioxid. Redox. Signal 8, 753–762.10.1089/ars.2006.8.753Search in Google Scholar PubMed

Matsui, M., Fowler, J.H., and Walling, L.L. (2006). Leucine aminopeptidases: diversity in structure and function. Biol. Chem. 387, 1535–1544.10.1515/BC.2006.191Search in Google Scholar PubMed

Miller, H.K., Carroll, R.K., Burda, W.N., Krute, C.N., Davenport, J.E., and Shaw, L.N. (2012). The extracytoplasmic function sigma factor sigmaS protects against both intracellular and extracytoplasmic stresses in Staphylococcus aureus. J. Bacteriol. 194, 4342–4354.10.1128/JB.00484-12Search in Google Scholar PubMed PubMed Central

Morty, R.E. and Morehead, J. (2002). Cloning and characterization of a leucyl aminopeptidase from three pathogenic Leishmania species. J. Biol. Chem. 277, 26057–26065.10.1074/jbc.M202779200Search in Google Scholar PubMed

Newton, G.L., Rawat, M., La Clair, J.J., Jothivasan, V.K., Budiarto, T., Hamilton, C.J., Claiborne, A., Helmann, J.D., and Fahey, R.C. (2009). Bacillithiol is an antioxidant thiol produced in Bacilli. NatChem. Biol. 5, 625–627.10.1038/nchembio.189Search in Google Scholar PubMed PubMed Central

Odintsov, S.G., Sabala, I., Bourenkov, G., Rybin, V., and Bochtler, M. (2005). Staphylococcus aureus aminopeptidase S is a founding member of a new peptidase clan. J. Biol. Chem. 280, 27792–27799.10.1074/jbc.M502023200Search in Google Scholar PubMed

Poreba, M., McGowan, S., Skinner-Adams, T.S., Trenholme, K.R., Gardiner, D.L., Whisstock, J.C., To, J., Salvesen, G.S., Dalton, J.P., and Drag, M. (2012). Fingerprinting the substrate specificity of M1 and M17 aminopeptidases of human malaria, Plasmodium falciparum. PLoS One 7, e31938.10.1371/journal.pone.0031938Search in Google Scholar PubMed PubMed Central

Rivera, F.E., Miller, H.K., Kolar, S.L., Stevens, Jr., S.M., and Shaw, L.N. (2012). The impact of CodY on virulence determinant production in community-associated methicillin-resistant Staphylococcus aureus. Proteomics 12, 263–268.10.1002/pmic.201100298Search in Google Scholar PubMed PubMed Central

Shaw, L., Golonka, E., Potempa, J., and Foster, S.J. (2004). The role and regulation of the extracellular proteases of Staphylococcus aureus. Microbiology 150, 217–228.10.1099/mic.0.26634-0Search in Google Scholar PubMed

Singh, A.K., Singh, R., Tomar, D., Pandya, C.D., and Singh, R. (2012). The leucine aminopeptidase of Staphylococcus aureus is secreted and contributes to biofilm formation. Int. J. Infect. Dis. 16, e375–381.10.1016/j.ijid.2012.01.009Search in Google Scholar PubMed

Skinner-Adams, T.S., Stack, C.M., Trenholme, K.R., Brown, C.L., Grembecka, J., Lowther, J., Mucha, A., Drag, M., Kafarski, P., McGowan, S., et al. (2009). Plasmodium falciparum neutral aminopeptidases: new targets for anti-malarials. Trends Biochem. Sci. 35, 53–61.10.1016/j.tibs.2009.08.004Search in Google Scholar PubMed

Soutourina, O., Poupel, O., Coppee, J.Y., Danchin, A., Msadek, T., and Martin-Verstraete, I. (2009). CymR, the master regulator of cysteine metabolism in Staphylococcus aureus, controls host sulphur source utilization and plays a role in biofilm formation. Mol. Microbiol. 73, 194–211.10.1111/j.1365-2958.2009.06760.xSearch in Google Scholar PubMed

Stack, C.M., Lowther, J., Cunningham, E., Donnelly, S., Gardiner, D.L., Trenholme, K.R., Skinner-Adams, T.S., Teuscher, F., Grembecka, J., Mucha, A., et al. (2007). Characterization of the Plasmodium falciparum M17 leucyl aminopeptidase. A protease involved in amino acid regulation with potential for antimalarial drug development. J. Biol. Chem. 282, 2069–2080.10.1074/jbc.M609251200Search in Google Scholar PubMed

Sullivan, M.A., Yasbin, R.E., and Young, F.E. (1984). New shuttle vectors for Bacillus subtilis and Escherichia coli which allow rapid detection of inserted fragments. Gene 29, 21–26.10.1016/0378-1119(84)90161-6Search in Google Scholar PubMed

Suzuki, H., Hashimoto, W., and Kumagai, H. (1993). Escherichia coli K-12 can utilize an exogenous gamma-glutamyl peptide as an amino acid source, for which gamma-glutamyltranspeptidase is essential. J. Bacteriol. 175, 6038–6040.10.1128/jb.175.18.6038-6040.1993Search in Google Scholar PubMed PubMed Central

Suzuki, H., Kamatani, S., and Kumagai, H. (2001). Purification and characterization of aminopeptidase B from Escherichia coli K-12. Biosci. Biotechnol. Biochem. 65, 1549–1558.10.1271/bbb.65.1549Search in Google Scholar PubMed

Received: 2012-10-19
Accepted: 2012-12-12
Published Online: 2012-12-14
Published in Print: 2013-06-01

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 15.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2012-0308/pdf
Scroll to top button