Combination of quercetin and tannic acid in inhibiting 26S proteasome affects S5a and 20S expression, and accumulation of ubiquitin resulted in apoptosis in cancer chemoprevention
Abstract
To look for oral proteasome inhibitors, daily injested food is the best source for cancer chemoprevention. A combination of active components from vegetables, coffee, tea, and fruit could be more efficient to inhibit 26S proteasome activities for preventing cancer diseases. Tannic acid and quercetin have been shown to strongly inhibit 26S proteasome activity, but the molecular target involved remains unknown. Overlay assay, peptide assay, Western blot, and 2-D gels were used to assess the combination of quercetin and tannic acid as a potential inhibitor. Here, we demonstrated that the combination of quercetin and tannic acid (1) synergistically suppresses chymotrypsin-, caspase-, and trypsin-like proteolytic activities, (2) are tightly binding substrates, (3) do not perturb the proteasome structure, (4) inhibit the 26S proteasome affected by ubiquitin, ATP, or β-casein, and (5) inhibit β-casein degradation by the 26S proteasome in vitro. Finally, the inhibition of the proteasome by a combination of quercetin plus tannic acid in Hep-2 cells resulted in the induction of S5a at low dose, accumulation of ubiquitin, and the cleavage of pro-caspase-3, followed by the induction of apoptotic cell death. Evaluating the combination of quercetin and tannic acid as an oral drug to prevent cancer may provide a pharmacological rationale to pursue preclinical trials of this combination.
©2013 by Walter de Gruyter Berlin Boston
Articles in the same Issue
- Masthead
- Masthead
- Guest Editorial
- Highlight: sensing hypoxia in the cell and the organism
- Highlight: Sensing Hypoxia in the Cell and the Organism
- Hypoxia-inducible factor prolyl 4-hydroxylases: common and specific roles
- The regulation, localization, and functions of oxygen-sensing prolyl hydroxylase PHD3
- Deciphering the emerging role of SUMO conjugation in the hypoxia-signaling cascade
- Hypoxia, the HIF pathway and neutrophilic inflammatory responses
- Hydroxylase-dependent regulation of the NF-κB pathway
- Role of hypoxia inducible factor-1α for interferon synthesis in mouse dendritic cells
- Pan-genomic binding of hypoxia-inducible transcription factors
- HIF mediated and DNA damage independent histone H2AX phosphorylation in chronic hypoxia
- Noninvasive assessment of hypoxia with 3-[18F]-fluoro-1-(2-nitro-1-imidazolyl)-2-propanol ([18F]-FMISO): a PET study in two experimental models of human glioma
- Research Articles/Short Communications
- Protein Structure and Function
- Homo- and heterotypic interactions between Pss proteins involved in the exopolysaccharide transport system in Rhizobium leguminosarum bv. trifolii
- Proteolysis
- Combination of quercetin and tannic acid in inhibiting 26S proteasome affects S5a and 20S expression, and accumulation of ubiquitin resulted in apoptosis in cancer chemoprevention
Articles in the same Issue
- Masthead
- Masthead
- Guest Editorial
- Highlight: sensing hypoxia in the cell and the organism
- Highlight: Sensing Hypoxia in the Cell and the Organism
- Hypoxia-inducible factor prolyl 4-hydroxylases: common and specific roles
- The regulation, localization, and functions of oxygen-sensing prolyl hydroxylase PHD3
- Deciphering the emerging role of SUMO conjugation in the hypoxia-signaling cascade
- Hypoxia, the HIF pathway and neutrophilic inflammatory responses
- Hydroxylase-dependent regulation of the NF-κB pathway
- Role of hypoxia inducible factor-1α for interferon synthesis in mouse dendritic cells
- Pan-genomic binding of hypoxia-inducible transcription factors
- HIF mediated and DNA damage independent histone H2AX phosphorylation in chronic hypoxia
- Noninvasive assessment of hypoxia with 3-[18F]-fluoro-1-(2-nitro-1-imidazolyl)-2-propanol ([18F]-FMISO): a PET study in two experimental models of human glioma
- Research Articles/Short Communications
- Protein Structure and Function
- Homo- and heterotypic interactions between Pss proteins involved in the exopolysaccharide transport system in Rhizobium leguminosarum bv. trifolii
- Proteolysis
- Combination of quercetin and tannic acid in inhibiting 26S proteasome affects S5a and 20S expression, and accumulation of ubiquitin resulted in apoptosis in cancer chemoprevention