Home Vitamin D and male reproductive system
Article
Licensed
Unlicensed Requires Authentication

Vitamin D and male reproductive system

  • Pablo R. Costanzo EMAIL logo and Pablo Knoblovits
Published/Copyright: November 30, 2016

Abstract

Vitamin D deficiency is a highly prevalent worldwide condition and affects people of all ages. The most important role of vitamin D is the regulation of intestinal calcium absorption and metabolism of calcium and phosphorus to maintain muscle and bone homeostasis. Furthermore, in recent years it has been discovered that the vitamin D receptor (VDR) is widely distributed in many organs and tissues where vitamin D can perform other actions that include the modulation of the immune response, insulin secretion, anti-proliferative effect on cells of vascular smooth muscle, modulation of the renin-angiotensin-aldosterone system and regulates cell growth in several organs. The VDR is widely distributed in the male reproductive system. Vitamin D induces changes in the spermatozoa’s calcium and cholesterol content and in protein phosphorylation to tyrosine/threonine residues. These changes could be involved in sperm capacitation. Vitamin D seems to regulate aromatase expression in different tissues. Studies analyzing seasonal variations of sex steroids in male populations yield conflicting results. This is probably due to the wide heterogeneity of the populations included according to age, systemic diseases and obesity.


Corresponding author: Pablo R. Costanzo, MD, Endocrinology Division, Hospital Italiano de Buenos Aires, San Juan Avenue 4244 8th Floor, 20. CP 1233, Buenos Aires, Argentina, Phone: (54-11) 49610610

  1. Author Statement

  2. Funding: Authors state no funding involved.

  3. Conflict of interest: Authors state no conflict of interest.

  4. Informed consent: Informed consent is not applicable.

  5. Ethical approval: The conducted research is not related to either human or animals use.

References

1. Webb AR, DeCosta BR, Holick MF. Sunlight regulates the cutaneous production of vitamin D3 by causing its photodegradation. J Clin Endocrinol Metab 1989;68:882–7.10.1210/jcem-68-5-882Search in Google Scholar

2. Holick MF. High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc 2006;81:353–73.10.4065/81.3.353Search in Google Scholar

3. Holick MF. Vitamin D: a millenium perspective. J Cell Biochem 2003;88:296–307.10.1002/jcb.10338Search in Google Scholar

4. Lips P. Vitamin D physiology. Prog Biophys Mol Biol 2006;92:4–8.10.1016/j.pbiomolbio.2006.02.016Search in Google Scholar

5. Mosekilde L. Vitamin D and the elderly. ClinEndocrinol (Oxf) 2005;62:265–81.10.1111/j.1365-2265.2005.02226.xSearch in Google Scholar

6. Zehnder D, Bland R, Williams MC, McNinch RW, Howie AJ, Stewart PM, Hewison M. Extrarenal expression of 25-hidroxyvitamin d(3)-1alpha-hydroxylase. J Clin Endocrinol Metabol 2001;86:888–94.10.1210/jcem.86.2.7220Search in Google Scholar

7. Leheste JR, Melsen F, Wellner M, Jansen P, Schlichting U, Renner-Müller I, Andreassen TT, Wolf E, Bachman S, Nykjaer A, Willnow TE. Hypocalcemia and osteopathy in mice with kidney-specific megalin gene defect. FASEB J 2003;17:247–9.10.1096/fj.02-0578fjeSearch in Google Scholar

8. Hilpert J, Wogensen L, Thykjaer T, Wellner M, Schlichting U, Orntoft TF, Bachmann S, Nykjaer A, Willnow TE. Expression profiling confirms the role of endocytic receptor megalin in renal vitamin D3 metabolism. Kidney Int 2002;62:1672–81.10.1046/j.1523-1755.2002.00634.xSearch in Google Scholar

9. Norman AW, Okamura WH, Hammond MW, Bishop JE, Dormanen MC, Bouillon R, van Baelen H, Ridall AL, Daane E, Khoury R, Farach-Carson MC. Comparison of 6-s-cis and 6-s-trans locked analogs of 1alpha,25-dihydroxyvitamin D3 indicates that the 6-s-cis conformation is preferred for rapid nongenomic biological responses and that neither 6-s-cis nor 6-s-trans locked analogs are preferred for genomic biological responses. Mol Endocrinol 1997;11:1518–31.10.1210/mend.11.10.9993Search in Google Scholar

10. Barsony J, Prufer K. Vitamin D receptor and retinoid X receptor interactions in motion. Vitam Horm 2002;65:345–76.10.1016/S0083-6729(02)65071-XSearch in Google Scholar

11. Huhtakangas JA, Olivera CJ, Bishop JE, Zanello LP, Norman AW. The vitamin D receptor is present in caveolae-enriched plasma membranes and binds 1alpha,25(OH)2-vitamin D3 in vivo and in vitro. Mol Endocrinol 2004;18:2660–71.10.1210/me.2004-0116Search in Google Scholar PubMed

12. Rebsamen MC, Sun J, Norman AW, Liao JK. 1alpha,25-dihydroxyvitamin D3 induces vascular smooth muscle cell migration via activation of phosphatidylinositol 3-kinase. Circ Res 2002;91:17–24.10.1161/01.RES.0000025269.60668.0FSearch in Google Scholar PubMed

13. Massheimer V, Boland R, de Boland AR. Rapid 1,25(OH)2-vitamin D3 stimulation of calcium uptake by rat intestinal cells involves a dihydroxypiridine-sensitive cAMP-dependent pathway. Cell Signal 2004;6:299–304.10.1016/0898-6568(94)90034-5Search in Google Scholar

14. Buitrago CG, Pardo VG, de Boland AR, Boland R. Activation of RAF-1 through RAS and protein kinase C mediates 1alpha,25(OH)2-vitamin D3 regulation of the mitogen-activated protein kinase pathway in muscle cells. J Biol Chem 2003;278:199–205.10.1074/jbc.M205732200Search in Google Scholar PubMed

15. Song X, Bishop JE, Okamura WH, Norman AW. Stimulation of phosphorylation of mitogen-activated protein kinase are required for 1alpha,25-dihydroxyvitamin D3 in promyelocytic NB4 leukemia cells: a structure-function study. Endocrinology 1998;139:457–65.10.1210/endo.139.2.5747Search in Google Scholar PubMed

16. Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr 2004;80:1678S–88S.10.1093/ajcn/80.6.1678SSearch in Google Scholar PubMed

17. Grant WB, Holick MF. Benefits and requirements of vitamin D for optimal health: a review. Altern Med Rev 2005;10:94–111.Search in Google Scholar

18. Holick MF. Vitamin D: the underappreciated D-lightful hormone that is important for skeletal and cellular health. Curr Opin Endocrinol Diabetes 2002;9:87–98.10.1097/00060793-200202000-00011Search in Google Scholar

19. Raisz LG, Trummel CL, Holick MF, DeLuca HF. 1,25-dihydroxycholecalciferol: a potent stimulator of bone resorption in tissue culture. Science 1972;175:768–9.10.1126/science.175.4023.768Search in Google Scholar PubMed

20. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 1998;95:3597–602.10.1073/pnas.95.7.3597Search in Google Scholar PubMed PubMed Central

21. Wasserman RH, Fullmer CS. Vitamin D and intestinal calcium transport: facts, speculations and hypothesis. J Nutr 1995;125:1971S–9S.10.1093/jn/125.suppl_7.1971SSearch in Google Scholar PubMed

22. Kinyamu HK, Gallagher JC, Balhorn KE, Petranick KM, Rafferty KA. Serum vitamin D metabolites and calcium absorption in normal young and elderly free-living women and in women living in nursing homes. Am J Clin Nutr 1997;65:790–7.10.1093/ajcn/65.3.790Search in Google Scholar PubMed

23. Holick MF. Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease and osteoporosis. Am J ClinNutr 2004;79:362–71.10.1093/ajcn/79.3.362Search in Google Scholar PubMed

24. Mahon BD, Wittke A, Weaver V, Cantorna MT. The targets of vitamin D depend on the differentiation and activation status of CD4-positive T cells. J Cell Biochem 2003;89:922–32.10.1002/jcb.10580Search in Google Scholar

25. Boonstra A, Barrat FJ, Crain C, Heath VL, Savelkoul HF, O’Garra A. 1alpha,25-Dihydroxyvitamin d3 has a direct effect on naïve CD4(+) T cells to enhance the development of Th2 cells. J Immunol 2001;167:4974–80.10.4049/jimmunol.167.9.4974Search in Google Scholar

26. Dusso AS, Brown AJ, Slatopolsky E. Vitamin D. Am J Physiol Renal Physiol 2005;289:F8–28.10.1016/B978-0-12-803247-3.00020-9Search in Google Scholar

27. Zittermann A, Dembinski J, Stehle P. Low vitamin D status is associated with low cord blood levels of the immunosuppressive cytokine interleukin-10. Pediatr Allergy Immunol 2004;15:242–6.10.1111/j.1399-3038.2004.00140.xSearch in Google Scholar

28. Van den Berghe G, Van Roosbroeck D, Vanhove P, Wouters PJ, De Pourcq L, Bouillon R. Bone turnover in prolonged critical illness: effect of vitamin D. J Clin Endocrinol Metab 2003;88:4623–32.10.1210/jc.2003-030358Search in Google Scholar

29. Targher G, Bertolini L, Padovani R, Zenari L, Scala L, Cigolini M, Arcaro G. Serum 25-hydroxyvitamin D3 concentrations and carotid artery intima-media thickness among type 2 diabetic patients. Clin Endocrinol (Oxf) 2006;65:593–7.10.1111/j.1365-2265.2006.02633.xSearch in Google Scholar

30. Zitterman A, Schleithoff SS, Tenderich G, Berthold HK, Korfer R, Stehle P. Low vitamin D status: a contributing factor in the pathogenesis of congestive heart failure? J Am Coll Cardiol 2003;41:105–12.10.1016/S0735-1097(02)02624-4Search in Google Scholar

31. Xiang W, Kong J, Chen S, Cao LP, Qiao G, Zheng W, Liu W, Li X, Gardner DG, Li YC. Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin-angiotensin systems. Am J Physiol Endocrinol Metab 2005;288:E125–32.10.1152/ajpendo.00224.2004Search in Google Scholar PubMed

32. Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest 2002;110:229–38.10.1172/JCI0215219Search in Google Scholar

33. Bourlon PM, Billaudel B, Faure-Dussert A. Influence of vitamin D3 deficiency and 1,25 dihydroxyvitamin D3 on de novo biosynthesis in the islets of the rat endocrine pancreas. J Endocrinol 1999;160:87–95.10.1677/joe.0.1600087Search in Google Scholar PubMed

34. Bourlon PM, Faure-Dussert A, Billaudel B. The de novo synthesis of numerous proteins is decreased during vitamin D3 deficiency and is gradually restored by 1,25-dihydroxyvitamin D3 repletion in the islets of Langerhans of rats. J Endocrinol 1999;162:101–9.10.1677/joe.0.1620101Search in Google Scholar

35. Holick MF. Vitamin D: its role in cancer prevention and treatment. Prog Biophys Mol Biol 2006;92:49–59.10.1016/j.pbiomolbio.2006.02.014Search in Google Scholar

36. DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 2004;80:1689S–96S.10.1093/ajcn/80.6.1689SSearch in Google Scholar

37. Norman AW, Bishop JE, Bula CM, Olivera CJ, Mizwicki MT, Zanello LP, Ishida H, Okamura WH. Molecular tools for study of genomic and rapid signal transduction responses initiated by 1alpha,25(OH)2-vitamin D3. Steroids 2002;67:457–66.10.1016/S0039-128X(01)00167-2Search in Google Scholar

38. Li P, Li C, Zhao X, Zhang X, Nicosia SV, Bai W. p27(Kip1) stabilization and G1 arrest by 1,25-dihydroxyvitamin D3 in ovarian cancer cells mediated through down-regulation of cyclin E/cyclin-dependent kinase 2 and Skp1-Cullin-F-box protein/Skp2 ubiquitin ligase. J Biol Chem 2004;279:25260–7.10.1074/jbc.M311052200Search in Google Scholar

39. Cordero JB, Cozzolino M, Lu Y, Vidal M, Slatopolsky E, Stahl PD, Barbieri MA, Dusso A. 1,25-Dihydroxyvitamin D down-regulates cell membrane growth and nuclear growth-promoting signals by the epidermal growth factor receptor. J Biol Chem 2002;277:38965–71.10.1074/jbc.M203736200Search in Google Scholar

40. Lamb J, Ramaswamy S, Ford HL, Contreras B, Martinez RV, Kittrell FS, Zahnow CA, Patterson N, Golub TR, Ewen ME. A mechanism of cyclin D1 action encoded in the patterns of gene expression in human cancer. Cell 2003;114:323–34.10.1016/S0092-8674(03)00570-1Search in Google Scholar

41. Sergeev IN. Calcium as a mediator of 1,25-dihydroxyvitamin D3 induced apoptosis. J Steroid Biochem Mol Biol 2004; 89–90:419–25.10.1016/j.jsbmb.2004.03.010Search in Google Scholar PubMed

42. Varlance ME, Welsh J. Breast cancer cell regulation by high-dose vitamin D compounds in the absence of nuclear vitamin D receptor. J Steroid Biochem Mol Biol 2004;89–90:221–5.10.1016/j.jsbmb.2004.03.082Search in Google Scholar PubMed

43. Mantell DJ, Owens PE, Bundred NJ, Mawer EB, Canfield AE. 1alpha,25-dihydroxyvitamin D3 inhibits angiogenesis in vitro and in vivo. Circ Res 2000;87:214–20.10.1161/01.RES.87.3.214Search in Google Scholar PubMed

44. Costanzo PR, Salerni H. Hipovitaminosis D: afectaciones no clásicas. Rev Arg Endocrinol 2009;46:3–23.Search in Google Scholar

45. Merke J, Hugel U, Ritz E. Nuclear testicular 1,25-dihydroxyvitamin D3 receptors in Sertoli cells and seminiferous tubules of adult rodents. Biochem Biophys Res Commun 1985;127:303–9.10.1016/S0006-291X(85)80159-5Search in Google Scholar

46. Aquila S, Guido C, Middea E, Perrotta I, Bruno R, Pellegrino M, Andò S. Human male gamete endocrinology: 1 alpha, 25-dihydroxyvitamin D3 (1,25(OH)2D3) regulates different aspects of human sperm biology and metabolism. Reprod Biol Endocrinol 2009;7:140–52.10.1186/1477-7827-7-140Search in Google Scholar PubMed PubMed Central

47. Kwienciski GG, Petrie GI, DeLuca HF. Vitamin D is necessary for reproductive functions of the male rat. J Nutr 1989;119:741–4.10.1093/jn/119.5.741Search in Google Scholar PubMed

48. Uhland AM, Kwienciski GG, DeLuca HF. Normalization of serum calcium restores fertility in vitamin d-deficient male rats. J Nutr 1992;122:1338–44.10.1093/jn/122.6.1338Search in Google Scholar PubMed

49. Corbett ST, Hill O, Nangia AK. Vitamin D receptor found in human sperm. Urology 2006;68:1345–9.10.1016/j.urology.2006.09.011Search in Google Scholar PubMed

50. Aquila S, Guido C, Perrotta I, Tripepi S, Nastro A, Nandò S. Human sperm anatomy: ultrastructural localization of 1alpha,25-dihydroxyvitamin D receptor and its possible role in the human male gamete. J Anat 2008;213:555–64.10.1111/j.1469-7580.2008.00975.xSearch in Google Scholar PubMed PubMed Central

51. Blomberg Jensen M, Nielsen JE, Jogensen A, Rajperts-De Meyts E, Krinstensen DM, Jorgensen N, Skakkebaek NE, Juul A, Leffers H. Vitamin D receptor and vitamin D metabolizing enzymes are expressed in the human male reproductive tract. Hum Reprod 2010;25:1303–11.10.1093/humrep/deq024Search in Google Scholar PubMed

52. Ladizesky M, Oliveri B, Mautalen CA. Serum levels of 25-hydroxyvitamin D in the normal population of Buenos Aires: its seasonal variation. Medicina (B Aires) 1987;47:268–72.Search in Google Scholar

53. Fassi J, Russo Picasso MF, Furci A, Sorroche P, Jáuregui R, Plantalech L. Seasonal variations in 25-hydroxivytamin D in young and elderly and populations in Buenos Aires city. Medicina (B Aires) 2003;63:215–20.Search in Google Scholar

54. Costanzo PR, Elías NO, Kleiman Rubinsztein J, García Basavilbaso NX, Piacentini R, Salerni HH. Ultraviolet radiation impact on seasonal variations of serum 25-hydroxy-vitamin D in healthy young adults in Buenos Aires. Medicina (B Aires) 2011;71:336–42.Search in Google Scholar

55. Ramlau-Hansen CH, Moeller UK, Bonde JP, Olsen J, Thulstrup AM. Are serum levels of vitamin D associated with semen quality? Results from a cross-sectional study in young healthy men. Fertil Steril 2011;95:1000–4.10.1016/j.fertnstert.2010.11.002Search in Google Scholar PubMed

56. Hammoud AO, Meikle AW, Peterson CM, Standford J, Gibson M, Carrell DT. Association of 25-hydroxy-vitamin D levels with semen and hormonal parameters. Asian J Androl 2012;14: 855–9.10.1038/aja.2012.77Search in Google Scholar PubMed PubMed Central

57. Blomberg Jensen M, Bjerrum PJ, Jessen TE, Nielsen JE, Joensen UN, Olesen IA, Petersen JH, Juul A, Dissing S, Jorgensen N. Vitamin D is positively associated with sperm motility and increases intracellular calcium in human spermatozoa. Hum Reprod 2011;26:1303–17.10.1093/humrep/der059Search in Google Scholar PubMed

58. Malm G, Haugen TB, Henrichsen T, Bjorsvik C, Grotmol T, Saether T, Malm J, Figenschau Y, Hagmar L, Rylander L, Levine RJ, Giwercman A. Reproductive function during summer and winter in Norwegian men living north and south of the Arctic circle. J Clin Endocrinol Metab 2004;89:4397–402.10.1210/jc.2004-0427Search in Google Scholar PubMed

59. Hirai T, Tsujimura A, Ueda T, Fujita K, Matsuoka Y, Takao T, Miyagawa Y, Koike N, Okuyama A. Effect of 1,25-dihydroxyvitamin D on testicular morphology and gene expression in experimental cryptorchid mouse: testis specific cDNA microarray analysis and potential implication in male infertility. J Urol 2009;181:1487–92.10.1016/j.juro.2008.11.007Search in Google Scholar PubMed

60. Kinuta K, Tanaka H, Moriwake T, Aya K, Kato S, Seino Y. Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads. Endocrinology 2000;141:1317–24.10.1210/endo.141.4.7403Search in Google Scholar PubMed

61. Blomberg Jensen M, Lieben L, Nielsen JE, Willems A, Jorgensen A, Juul A, Toppari J, Carmeliet G, Rajpert-De Meyts E. Characterization of the testicular, epididymal and endocrine phenotypes in the Leuven Vdr-deficient mice model: targeting estrogen signalling. Mol Cell Endocrinol 2013;377:93–102.10.1016/j.mce.2013.06.036Search in Google Scholar PubMed

62. Andersson AM, Carlsen E, Petersen JH, Skakkebaek NE. Variations in levels of serum inhibin B, testosterone, estradiol, luteinizing hormone, follicle-stimulating hormone, and sex hormone-binding globulin in monthly samples from healthy men during a 17 month-period: possible effects of seasons. J Clin Endocrinol Metab 2003;88:932–7.10.1210/jc.2002-020838Search in Google Scholar PubMed

63. Svartberg J, Jorde R, Sundsfjord J, Bonna KH, Barrett-Connor E. Seasonal variation of testosterone and waist to hip ratio in men: the Tromso study. J Clin Endocrinol Metab 2003;88:3099–104.10.1210/jc.2002-021878Search in Google Scholar PubMed

64. van Anders SM, Hampson E, Watson NV. Seasonality, waist-to-hip ratio and salivary testosterone. Psychoneuroendocrinology 2006;31:895–9.10.1016/j.psyneuen.2006.03.002Search in Google Scholar PubMed

65. Stanton SJ, Mullette-Gillman OA, Huettel SA. Seasonal variation of salivary testosterone in men, normally cycling women, and human using hormonal contraceptives. Physiol Behav 2011;104:804–8.10.1016/j.physbeh.2011.07.009Search in Google Scholar PubMed PubMed Central

66. Wehr E, Pilz S, Boehm BO, Marz W, Obermayer-Pietsch B. Association of vitamin D status with serum androgens levels in men. Clin Endocrinol (Oxf) 2010;73:243–8.10.1111/j.1365-2265.2009.03777.xSearch in Google Scholar PubMed

67. Lee DM, Tajar A, Pye SR, Boonen S, Vanderschueren D, Bouillon R, O’Neill TW, Bartfai G, Casanueva FF, Finn JD, Forti G, Giwercman A, Han TS, Huhtaniemi IT, Kula K, Lean ME, Pendleton N, Punab M, Wu FC; EMAS study group. Association of hypogonadism with vitamin D status: the European Male Aging Study. Eur J Endocrinol 2012;166:77–85.10.1530/EJE-11-0743Search in Google Scholar PubMed

68. Nimptsch K, Platz EA, Willett WC, Giovannucci E. Association between plasma 25-OH vitamin d and testosterone levels in men. Clin Endocrinol (Oxf) 2012;77:106–12.10.1111/j.1365-2265.2012.04332.xSearch in Google Scholar PubMed PubMed Central

69. Lerchbaum E, Pilz S, Trummer C, Rabe T, Schenk M, Heijboer AC, Obermayer-Pietsch B. Serum vitamin D levels and hypogonadism in men. Andrology 2014;2:748–54.10.1111/j.2047-2927.2014.00247.xSearch in Google Scholar PubMed

70. Karras S, Anagnostis P, Kotsa K, Goulis DG. Vitamin D and gonadal function in men: a potential inverse U-shaped association? Andrology 2016;4:542–4.10.1111/andr.12173Search in Google Scholar PubMed

71. Pilz S, Frisch S, Koertke H, Kuhn J, Dreier J, Obermayer-Pietsch B, Wehr E, Zittermann A. Effects of vitamin D supplementation on testosterone levels in men. Horm Metab Res 2011;43: 223–5.10.1055/s-0030-1269854Search in Google Scholar PubMed

72. Jorde R, Grimnes G, Hutchinson MS, Kjaergaard M, Kamycheva E, Svartberg J. Supplementation with vitamin D does not increase serum testosterone in healthy males. Horm Metab Res 2013;45:675–81.10.1055/s-0033-1345139Search in Google Scholar PubMed

73. Wang N, Han B, Li Q, Chen Y, Chen Y, Xia F, Lin D, Jensen MD, Lu Y. Vitamin D associated with testosterone and hypogonadism in Chinese men: results from a cross-sectional SPECT-China study. Reprod Biol Endocrinol 2015;13:74.10.1186/s12958-015-0068-2Search in Google Scholar PubMed PubMed Central

74. Costanzo P, Suárez S, Kozak A, Knoblovits P. Seasonal variations of sex steroids in young male population and its relationship with plasma levels of vitamin D [abstract]. J Sex Med 2015;12(suppl 8):469.Search in Google Scholar

75. Hofer D, Munzker J, Schwetz V, Ulbing M, Hutz K, Stiegler P, Zigeuner R, Pieber TR, Muller H, Obermayer-Pietsch B. Testicular synthesis and vitamin D action. J Clin Endocrinol Metab 2014;99:3766–73.10.1210/jc.2014-1690Search in Google Scholar PubMed

76. Lundqvist J, Norlin M, Wikvall K. 1α,25-Dihydroxyvitamin D3 exerts tissue-specific effects on estrogen and androgen metabolism. Biochim Biophys Acta 2011;1811:263–70.10.1016/j.bbalip.2011.01.004Search in Google Scholar PubMed

Received: 2016-10-15
Accepted: 2016-11-2
Published Online: 2016-11-30
Published in Print: 2016-12-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hmbci-2016-0049/html
Scroll to top button