Home Hyperglycemic memory in metabolism and cancer
Article
Licensed
Unlicensed Requires Authentication

Hyperglycemic memory in metabolism and cancer

  • Changhu Lee , Dohyeon An and Jiyoung Park EMAIL logo
Published/Copyright: May 26, 2016

Abstract

Hyperglycemia is a hallmark of both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Recent evidence strongly suggests that prolonged exposure to hyperglycemia can epigenetically modify gene expression profiles in human cells and that this effect is sustained even after hyperglycemic control is therapeutically achieved; this phenomenon is called hyperglycemic memory. This metabolic memory effect contributes substantially to the pathology of various diabetic complications, such as diabetic retinopathy, hypertension, and diabetic nephropathy. Due to the metabolic memory in cells, diabetic patients suffer from various complications, even after hyperglycemia is controlled. With regard to this strong association between diabetes and cancer risk, cancer cells have emerged as key target cells of hyperglycemic memory in diabetic cancer patients. In this review, we will discuss the recent understandings of the molecular mechanisms underlying hyperglycemic memory in metabolism and cancer.

Acknowledgments

This work was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI14C1277) (J.P) and a grant supported by the 2015 research fund (1.150096.01) of UNIST (Ulsan National Institute of Science and Technology) (J.P).

Conflict of interest statement: The authors declare that there is no conflict of interest.

References

1. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. J Am Med Assoc 2002;287:2570–81.10.1001/jama.287.19.2570Search in Google Scholar

2. Boulton AJ, Vinik AI, Arezzo JC, Bril V, Feldman EL, Freeman R, Malik RA, Maser RE, Sosenko JM, Ziegler D. Diabetic neuropathies a statement by the American Diabetes Association. Diabetes Care 2005;28:956–62.10.2337/diacare.28.4.956Search in Google Scholar

3. Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet 2010;376:124–36.10.1016/S0140-6736(09)62124-3Search in Google Scholar

4. Sowers JR, Epstein M, Frohlich ED. Diabetes, hypertension, and cardiovascular disease an update. Hypertension 2001;37:1053–9.10.1161/01.HYP.37.4.1053Search in Google Scholar

5. Ziyadeh FN, Sharma K. Overview: combating diabetic nephropathy. J Am Soc Nephrol 2003;14:1355–7.10.1097/01.ASN.0000065608.37756.58Search in Google Scholar

6. Cusick M, Meleth AD, Agrón E, Fisher MR, Reed GF, Knatterud GL, Barton FB, Davis MD, Ferris FL, Chew EY. Associations of mortality and diabetes complications in patients with type 1 and type 2 diabetes early treatment diabetic retinopathy study report no. 27. Diabetes Care 2005;28:617–25.10.2337/diacare.28.3.617Search in Google Scholar

7. Dinneen SF, Gerstein HC. The association of microalbuminuria and mortality in non – insulin-dependent diabetes mellitus: a systematic overview of the literature. Arch Intern Med 1997;157:1413–8.10.1001/archinte.1997.00440340025002Search in Google Scholar

8. Kramer CK, Rodrigues TC, Canani LH, Gross JL, Azevedo MJ. Diabetic retinopathy predicts all-cause mortality and cardiovascular events in both type 1 and 2 diabetes meta-analysis of observational studies. Diabetes Care 2011;34:1238–44.10.1210/endo-meetings.2011.PART3.P7.P2-557Search in Google Scholar

9. Valmadrid CT, Klein R, Moss SE, Klein BE. The risk of cardiovascular disease mortality associated with microalbuminuria and gross proteinuria in persons with older-onset diabetes mellitus. Arch Intern Med 2000;160:1093–100.10.1001/archinte.160.8.1093Search in Google Scholar

10. Gæde P, Vedel P, Parving H-H, Pedersen O. Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: the Steno type 2 randomised study. Lancet 1999;353:617–22.10.1016/S0140-6736(98)07368-1Search in Google Scholar

11. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414:813–20.10.1038/414813aSearch in Google Scholar PubMed

12. Rajasekar P, O’Neill CL, Eeles L, Stitt AW, Medina RJ. Epigenetic changes in endothelial progenitors as a possible cellular basis for glycemic memory in diabetic vascular complications. J Diabetes Res 2015;2015:17.10.1155/2015/436879Search in Google Scholar PubMed PubMed Central

13. Reddy MA, Zhang E, Natarajan R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia 2015;58:443–55.10.1007/s00125-014-3462-ySearch in Google Scholar PubMed PubMed Central

14. Nathan DM. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. J Am Med Assoc 2003;290:2159–67.10.1001/jama.290.16.2159Search in Google Scholar PubMed PubMed Central

15. Nathan DM. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care 2014;37:9–16.10.2337/dc13-2112Search in Google Scholar PubMed PubMed Central

16. Kadiyala CS, Zheng L, Du Y, Yohannes E, Kao HY, Miyagi M, Kern TS. Acetylation of retinal histones in diabetes increases inflammatory proteins: effects of minocycline and manipulation of histone acetyltransferase (HAT) and histone deacetylase (HDAC). J Biol Chem 2012;287:25869–80.10.1074/jbc.M112.375204Search in Google Scholar PubMed PubMed Central

17. Villeneuve LM, Reddy MA, Lanting LL, Wang M, Meng L, Natarajan R. Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proceedings of the National Academy of Sciences 2008;105:9047–52.10.1073/pnas.0803623105Search in Google Scholar PubMed PubMed Central

18. Yuan H, Reddy MA, Sun G, Lanting L, Wang M, Kato M, Natarajan R. Involvement of p300/CBP and epigenetic histone acetylation in TGF-β1-mediated gene transcription in mesangial cells. Am J Physiol Renal Physiol 2013;304:F601–13.10.1152/ajprenal.00523.2012Search in Google Scholar PubMed PubMed Central

19. Miao F, Chen Z, Genuth S, Paterson A, Zhang L, Wu X, Li SM, Cleary P, Riggs A, Harlan DM. Evaluating the role of epigenetic histone modifications in the metabolic memory of type 1 diabetes. Diabetes 2014;63:1748–62.10.2337/db13-1251Search in Google Scholar PubMed PubMed Central

20. Brasacchio D, Okabe J, Tikellis C, Balcerczyk A, George P, Baker EK, Calkin AC, Brownlee M, Cooper ME, El-Osta A. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 2009;58:1229–36.10.2337/db08-1666Search in Google Scholar PubMed PubMed Central

21. El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG, Cooper ME, Brownlee M. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med 2008;205:2409–17.10.1084/jem.20081188Search in Google Scholar PubMed PubMed Central

22. Li Y, Reddy MA, Miao F, Shanmugam N, Yee J-K, Hawkins D, Ren B, Natarajan R. Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-κB-dependent inflammatory genes relevance to diabetes and inflammation. J Biol Chem 2008;283:26771–81.10.1074/jbc.M802800200Search in Google Scholar PubMed PubMed Central

23. Miao F, Gonzalo IG, Lanting L, Natarajan R. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J Biol Chem 2004;279:18091–7.10.1074/jbc.M311786200Search in Google Scholar PubMed

24. Chen S, Feng B, George B, Chakrabarti R, Chen M, Chakrabarti S. Transcriptional coactivator p300 regulates glucose-induced gene expression in endothelial cells. Am J Physiol Endocrinol Metab 2010;298:E127–37.10.1152/ajpendo.00432.2009Search in Google Scholar PubMed

25. Gao C, Chen G, Liu L, Li X, He J, Jiang L, Zhu J, Xu Y. Impact of high glucose and proteasome inhibitor MG132 on histone H2A and H2B ubiquitination in rat glomerular mesangial cells. J Diabetes Res 2013;2013:10.10.1155/2013/589474Search in Google Scholar PubMed PubMed Central

26. Bell CG, Teschendorff AE, Rakyan VK, Maxwell AP, Beck S, Savage DA. Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Medical Genomics 2010;3:11.10.1186/1755-8794-3-33Search in Google Scholar PubMed PubMed Central

27. Kim ES, Isoda F, Kurland I, Mobbs CV. Glucose-induced metabolic memory in Schwann cells: Prevention by PPAR agonists. Endocrinology 2013;154:3054–66.10.1210/en.2013-1097Search in Google Scholar PubMed PubMed Central

28. Tewari S, Zhong Q, Santos JM, Kowluru RA. Mitochondria DNA replication and DNA methylation in the metabolic memory associated with continued progression of diabetic retinopathy. Invest Ophthalmol Vis Sci 2012;53:4881–8.10.1167/iovs.12-9732Search in Google Scholar PubMed PubMed Central

29. Mishra M, Kowluru RA. Epigenetic Modification of Mitochondrial DNA in the Development of Diabetic RetinopathyMethylation of mtDNA in Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2015;56:5133–42.10.1167/iovs.15-16937Search in Google Scholar PubMed PubMed Central

30. Maghbooli Z, Hossein-nezhad A, Larijani B, Amini M, Keshtkar A. Global DNA methylation as a possible biomarker for diabetic retinopathy. Diabetes Metab Res Rev 2015;31:183–9.10.1002/dmrr.2584Search in Google Scholar PubMed

31. Maghbooli Z, Larijani B, Emamgholipour S, Amini M, Keshtkar A, Pasalar P. Aberrant DNA methylation patterns in diabetic nephropathy. J Diabetes Metab Disord 2014;13:1.10.1186/2251-6581-13-69Search in Google Scholar

32. Marumo T, Yagi S, Kawarazaki W, Nishimoto M, Ayuzawa N, Watanabe A, Ueda K, Hirahashi J, Hishikawa K, Sakurai H. Diabetes induces aberrant DNA methylation in the proximal tubules of the kidney. J Am Soc Nephrol 2015;26:2388–97.10.1681/ASN.2014070665Search in Google Scholar

33. Kovacs B, Lumayag S, Cowan C, Xu S. MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci 2011;52:4402–9.10.1167/iovs.10-6879Search in Google Scholar

34. Kato M, Arce L, Wang M, Putta S, Lanting L, Natarajan R. A microRNA circuit mediates transforming growth factor-β1 autoregulation in renal glomerular mesangial cells. Kidney Int 2011;80:358–68.10.1038/ki.2011.43Search in Google Scholar

35. Zhong X, Liao Y, Chen L, Liu G, Feng Y, Zeng T, Zhang J. The microRNAs in the pathogenesis of metabolic memory. Endocrinology 2015;156:3157–68.10.1210/en.2015-1063Search in Google Scholar

36. Stattin P, Björ O, Ferrari P, Lukanova A, Lenner P, Lindahl B, Hallmans G, Kaaks R. Prospective study of hyperglycemia and cancer risk. Diabetes Care 2007;30:561–7.10.2337/dc06-0922Search in Google Scholar

37. Jee SH, Ohrr H, Sull JW, Yun JE, Ji M, Samet JM. Fasting serum glucose level and cancer risk in Korean men and women. J Am Med Assoc 2005;293:194–202.10.1001/jama.293.2.194Search in Google Scholar

38. Diabetes Control and Complications Trial Research Group. The effect of intensive diabetes treatment on the progression of diabetic retinopathy in insulin-dependent diabetes mellitus: the Diabetes Control and Complications Trial. Arch Ophthalmol 1995;113:36.10.1001/archopht.1995.01100010038019Search in Google Scholar

39. Diabetes Control and Complications Trial Research Group. Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial. Kidney Int 1995;47:1703–20.10.1038/ki.1995.236Search in Google Scholar

40. Diabetes Control and Complications Trial Research Group. Progression of retinopathy with intensive versus conventional treatment in the Diabetes Control and Complications Trial. Ophthalmology 1995;102:647–61.10.1016/S0161-6420(95)30973-6Search in Google Scholar

41. Diabetes Control and Complications Trial Research Group. The effect of intensive diabetes therapy on the development and progression of neuropathy. Ann Intern Med 1995;122:561–8.10.7326/0003-4819-122-8-199504150-00001Search in Google Scholar PubMed

42. Duan W, Shen X, Lei J, Xu Q, Yu Y, Li R, Wu E, Ma Q. Hyperglycemia, a neglected factor during cancer progression. BioMed Res Int 2014;2014:461917.10.1155/2014/461917Search in Google Scholar PubMed PubMed Central

43. Shikata K, Ninomiya T, Kiyohara Y. Diabetes mellitus and cancer risk: review of the epidemiological evidence. Cancer Sci 2013;104:9–14.10.1111/cas.12043Search in Google Scholar PubMed PubMed Central

44. Vigneri P, Frasca F, Sciacca L, Pandini G, Vigneri R. Diabetes and cancer. Endocrine-related cancer 2009;16:1103–23.10.1677/ERC-09-0087Search in Google Scholar PubMed

45. Lee SK, Moon JW, Lee YW, Lee JO, Kim SJ, Kim N, Kim J, Kim HS, Park S-H. The effect of high glucose levels on the hypermethylation of protein phosphatase 1 regulatory subunit 3C (PPP1R3C) gene in colorectal cancer. J Genet 2015;94:75–85.10.1007/s12041-015-0492-2Search in Google Scholar PubMed

46. Yang I-P, Tsai H-L, Huang C-W, Lu C-Y, Miao Z-F, Chang S-F, Hank Juo S-H, Wang J-Y. High blood sugar levels significantly impact the prognosis of colorectal cancer patients through down-regulation of microRNA-16 by targeting Myb and VEGFR2. Oncotarget 2016;7:18837–50.10.18632/oncotarget.7719Search in Google Scholar PubMed PubMed Central

47. Biernacka K, Uzoh CC, Zeng L, Persad RA, Bahl A, Gillatt D, Perks CM, Holly JM. Hyperglycaemia-induced chemoresistance of prostate cancer cells due to IGFBP2. Endocr Relat Cancer 2013;20:741–51.10.1530/ERC-13-0077Search in Google Scholar PubMed

48. Park J, Sarode VR, Euhus D, Kittler R, Scherer PE. Neuregulin 1-HER axis as a key mediator of hyperglycemic memory effects in breast cancer. Proce Natl Acad Sci 2012;109:21058–63.10.1073/pnas.1214400109Search in Google Scholar PubMed PubMed Central

49. Gupta C, Kaur J, Tikoo K. Regulation of MDA-MB-231 cell proliferation by GSK-3β involves epigenetic modifications under high glucose conditions. Exp cell Res 2014;324:75–83.10.1016/j.yexcr.2014.03.019Search in Google Scholar PubMed

50. Richardson LC, Pollack LA. Therapy insight: influence of type 2 diabetes on the development, treatment and outcomes of cancer. Nat Clin Pract Oncol 2005;2:48–53.10.1038/ncponc0062Search in Google Scholar PubMed

51. Hitchler MJ, Domann FE. Metabolic defects provide a spark for the epigenetic switch in cancer. Free Radic Biol Med 2009;47:115–27.10.1016/j.freeradbiomed.2009.04.010Search in Google Scholar PubMed PubMed Central

52. Lu C, Thompson CB. Metabolic regulation of epigenetics. Cell Metab 2012;16:9–17.10.1016/j.cmet.2012.06.001Search in Google Scholar PubMed PubMed Central

53. Wellen KE, Thompson CB. A two-way street: reciprocal regulation of metabolism and signalling. Nat Rev Mol Cell Biol 2012;13:270–6.10.1038/nrm3305Search in Google Scholar PubMed

54. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011;61:69–90.10.3322/caac.20107Search in Google Scholar PubMed

55. Larsson SC, Mantzoros CS, Wolk A. Diabetes mellitus and risk of breast cancer: a meta-analysis. Int J Cancer 2007;121:856–62.10.1002/ijc.22717Search in Google Scholar PubMed

56. Villarreal-Garza C, Shaw-Dulin R, Lara-Medina F, Bacon L, Rivera D, Urzua L, Aguila C, Ramirez-Morales R, Santamaria J, Bargallo E. Impact of diabetes and hyperglycemia on survival in advanced breast cancer patients. Exp Diabetes Res 2012;2012:732027.10.1155/2012/732027Search in Google Scholar PubMed PubMed Central

57. Zeng L, Biernacka KM, Holly JM, Jarrett C, Morrison AA, Morgan A, Winters ZE, Foulstone EJ, Shield JP, Perks CM. Hyperglycaemia confers resistance to chemotherapy on breast cancer cells: the role of fatty acid synthase. Endocr Relat Cancer 2010;17:539–51.10.1677/ERC-09-0221Search in Google Scholar PubMed

58. Zeng L, Zielinska HA, Arshad A, Shield JP, Bahl A, Holly JM, Perks CM. Hyperglycaemia-induced chemoresistance in breast cancer cells: role of the estrogen receptor. Endocr Relat Cancer 2016;23:125–34.10.1530/ERC-15-0507Search in Google Scholar PubMed

59. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005;5:341–54.10.1038/nrc1609Search in Google Scholar PubMed

60. Sheng Q, Liu X, Fleming E, Yuan K, Piao H, Chen J, Moustafa Z, Thomas RK, Greulich H, Schinzel A. An activated ErbB3/NRG1 autocrine loop supports in vivo proliferation in ovarian cancer cells. Cancer Cell 2010;17:298–310.10.1016/j.ccr.2009.12.047Search in Google Scholar PubMed PubMed Central

61. Joost H-G. Diabetes and cancer: epidemiology and potential mechanisms. Diab Vasc Dis Res 2014;11:390–4.10.1177/1479164114550813Search in Google Scholar

62. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, Pollak M, Regensteiner JG, Yee D. Diabetes and cancer: a consensus report. CA Cancer J Clin 2010;60:207–21.10.3322/caac.20078Search in Google Scholar

63. Oyama N, Akino H, Suzuki Y, Kanamaru H, Sadato N, Yonekura Y, Okada K. The increased accumulation of [18F] fluorodeoxyglucose in untreated prostate cancer. JPn J Clin Oncol 1999;29:623–29.10.1093/jjco/29.12.623Search in Google Scholar

64. Singh G, Lakkis CL, Laucirica R, Epner DE. Regulation of prostate cancer cell division by glucose. J Cell Physiol 1999;180:431–8.10.1002/(SICI)1097-4652(199909)180:3<431::AID-JCP14>3.0.CO;2-OSearch in Google Scholar

65. Thomas F, Holly JM, Persad R, Bahl A, Perks CM. Fibronectin confers survival against chemotherapeutic agents but not against radiotherapy in DU145 prostate cancer cells: Involvement of the insulin like growth factor-1 receptor. Prostate 2010;70:856–65.10.1002/pros.21119Search in Google Scholar

66. DeGraff DJ, Aguiar AA, Sikes RA. Disease evidence for IGFBP-2 as a key player in prostate cancer progression and development of osteosclerotic lesions. Am J Transl Res 2009;1:115–30.Search in Google Scholar

67. Chatterjee S, Park ES, Soloff MS. Proliferation of DU145 prostate cancer cells is inhibited by suppressing insulin-like growth factor binding protein-2. Int J Urol 2004;11:876–84.10.1111/j.1442-2042.2004.00898.xSearch in Google Scholar

68. Uzoh C, Holly J, Biernacka K, Persad R, Bahl A, Gillatt D, Perks C. Insulin-like growth factor-binding protein-2 promotes prostate cancer cell growth via IGF-dependent or-independent mechanisms and reduces the efficacy of docetaxel. Br J Cancer 2011;104:1587–93.10.1038/bjc.2011.127Search in Google Scholar

69. Uzoh CC, Perks CM, Bahl A, Holly JM, Sugiono M, Persad RA. PTEN-mediated pathways and their association with treatment-resistant prostate cancer. BJU Int 2009;104:556–61.10.1111/j.1464-410X.2009.08411.xSearch in Google Scholar

70. Jerónimo C, Bastian PJ, Bjartell A, Carbone GM, Catto JW, Clark SJ, Henrique R, Nelson WG, Shariat SF. Epigenetics in prostate cancer: biologic and clinical relevance. Eur Urol 2011;60:753–66.10.1016/j.eururo.2011.06.035Search in Google Scholar

71. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol 2010;17:1471–4.10.1245/s10434-010-0985-4Search in Google Scholar

72. Siegel R, Ward E, Brawley O, Jemal A. The impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 2011;61:212–36.10.3322/caac.20121Search in Google Scholar PubMed

73. Lin C-Y, Lee C-H, Huang C-C, Lee S-T, Guo H-R, Su S-B. Impact of high glucose on metastasis of colon cancer cells. World J Gastroenterol 2015;21:2047.10.3748/wjg.v21.i7.2047Search in Google Scholar PubMed PubMed Central

74. Costantino S, Paneni F, Cosentino F. Targeting chromatin remodeling to prevent cardiovascular disease in diabetes. Curr Pharm Biotechnol 2015;16:531–43.10.2174/138920101606150407113644Search in Google Scholar PubMed

75. Fodor A, Cozma A, Karnieli E. Personalized epigenetic management of diabetes. Per Med 2015;12:497–514.10.2217/pme.15.17Search in Google Scholar PubMed

76. Yoshikawa M, Hishikawa K, Marumo T, Fujita T. Inhibition of histone deacetylase activity suppresses epithelial-to-mesenchymal transition induced by TGF-β1 in human renal epithelial cells. J Am Soc Nephrol 2007;18:58–65.10.1681/ASN.2005111187Search in Google Scholar PubMed

77. Crosson CE, Mani SK, Husain S, Alsarraf O, Menick DR. Inhibition of histone deacetylase protects the retina from ischemic injury. Invest Ophthalmol Vis Sci 2010;51:3639–45.10.1167/iovs.09-4538Search in Google Scholar PubMed PubMed Central

78. Maradana MR, Thomas R, and O’Sullivan BJ. Targeted delivery of curcumin for treating type 2 diabetes. Mol Nutr Food Res 2013;57:1550–6.10.1002/mnfr.201200791Search in Google Scholar PubMed

79. Putta S, Lanting L, Sun G, Lawson G, Kato M, Natarajan R. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J Am Soc Nephrol 2012;23:458–69.10.1681/ASN.2011050485Search in Google Scholar PubMed PubMed Central

80. Baylin SB, Ohm JE. Epigenetic gene silencing in cancer–a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 2006;6:107–16.10.1038/nrc1799Search in Google Scholar PubMed

81. Wagner T, Jung M. New lysine methyltransferase drug targets in cancer. Nat Biotechnol 2012;30:622–3.10.1038/nbt.2300Search in Google Scholar PubMed

82. Baylin SB, Jones PA. A decade of exploring the cancer epigenome – biological and translational implications. Nat Rev Cancer 2011;11:726–34.10.1038/nrc3130Search in Google Scholar PubMed PubMed Central

83. Kelly TK, De Carvalho DD, Jones PA. Epigenetic modifications as therapeutic targets. Nat Biotechnol 2010;28:1069–78.10.1038/nbt.1678Search in Google Scholar PubMed PubMed Central

Received: 2016-4-5
Accepted: 2016-4-14
Published Online: 2016-5-26
Published in Print: 2016-5-1

©2016 by De Gruyter

Downloaded on 6.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hmbci-2016-0022/html
Scroll to top button