Abstract
Since the “rediscovery” of brown adipose tissue in adult humans, significant scientific efforts are being pursued to identify the molecular mechanisms to promote a phenotypic change of white adipocytes into brown-like cells, a process called “browning”. It is well documented that white adipose tissue (WAT) mass and factors released from WAT influence the vascular function and positively correlate with cardiac arrest, stroke, and other cardiovascular complications. Similar to other fat depots, perivascular adipose tissue (PVAT) is an active endocrine organ and anatomically surrounds vessels. Both brown-like and white-like PVAT secrete various adipokines, cytokines, and growth factors that either prevent or promote the development of cardiovascular diseases (CVDs) depending on the relative abundance of each type and their bioactivity in the neighboring vasculature. Notably, pathophysiological conditions, such as obesity, hypertension, or diabetes, induce the imbalance of PVAT-derived vasoactive products that promote the infiltration of inflammatory cells. This then triggers derangements in vascular smooth muscle cells and endothelial cell dysfunction, resulting in the development of vascular diseases. In this review, we discuss the recent advances on the contribution of PVAT in CVDs. Specifically, we summarize the current proposed roles of PVAT in relationship with vascular contractility, endothelial dysfunction, neointimal formation, arterial stiffness, and aneurysm.
Acknowledgments
There is no conflict of financial and/or other interest. This work was supported by the National Institutes of Health grant HL122664 (L.C.).
References
1. Karpe F, Pinnick KE. Biology of upper-body and lower-body adipose tissue-link to whole-body phenotypes. Nat Rev Endocrinol 2015;11:90–100.10.1038/nrendo.2014.185Search in Google Scholar PubMed
2. Bastien M, Poirier P, Lemieux I, Despres JP. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis 2014;56:369–81.10.1016/j.pcad.2013.10.016Search in Google Scholar PubMed
3. Fenzl A, Kiefer FW. Brown adipose tissue and thermogenesis. Horm Mol Biol Clin Investig 2014;19:25–37.10.1515/hmbci-2014-0022Search in Google Scholar PubMed
4. Cereijo R, Giralt M, Villarroya F. Thermogenic brown and beige/brite adipogenesis in humans. Ann Med 2014:1–9. doi:10.3109/07853890.2014.952328.10.3109/07853890.2014.952328Search in Google Scholar PubMed
5. Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerback S, Schrauwen P, Spiegelman BM. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012;150:366–76.10.1016/j.cell.2012.05.016Search in Google Scholar PubMed PubMed Central
6. Wu J, Cohen P, Spiegelman BM. Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev 2013;27:234–50.10.1101/gad.211649.112Search in Google Scholar PubMed PubMed Central
7. Jespersen NZ, Larsen TJ, Peijs L, Daugaard S, Homoe P, Loft A, de Jong J, Mathur N, Cannon B, Nedergaard J, Pedersen BK, Moller K, Scheele C. A classical brown adipose tissue mrna signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab 2013;17:798–805.10.1016/j.cmet.2013.04.011Search in Google Scholar PubMed
8. Garg A. Gender differences in the prevalence of metabolic complications in familial partial lipodystrophy (Dunnigan variety). J Clin Endocrinol Metab 2000;85:1776–82.Search in Google Scholar
9. Moitra J, Mason MM, Olive M, Krylov D, Gavrilova O, Marcus-Samuels B, Feigenbaum L, Lee E, Aoyama T, Eckhaus M, Reitman ML, Vinson C. Life without white fat: a transgenic mouse. Genes Dev 1998;12:3168–81.10.1101/gad.12.20.3168Search in Google Scholar PubMed PubMed Central
10. Pajvani UB, Trujillo ME, Combs TP, Iyengar P, Jelicks L, Roth KA, Kitsis RN, Scherer PE. Fat apoptosis through targeted activation of caspase 8: a new mouse model of inducible and reversible lipoatrophy. Nat Med 2005;11:797–803.10.1038/nm1262Search in Google Scholar PubMed
11. Duan SZ, Ivashchenko CY, Whitesall SE, D’Alecy LG, Duquaine DC, Brosius FC 3rd, Gonzalez FJ, Vinson C, Pierre MA, Milstone DS, Mortensen RM. Hypotension, lipodystrophy, and insulin resistance in generalized PPARgamma-deficient mice rescued from embryonic lethality. J Clin Invest 2007;117:812–22.10.1172/JCI28859Search in Google Scholar PubMed PubMed Central
12. Vernochet C, Damilano F, Mourier A, Bezy O, Mori MA, Smyth G, Rosenzweig A, Larsson NG, Kahn CR. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications. FASEB J 2014;28:4408–19.10.1096/fj.14-253971Search in Google Scholar PubMed PubMed Central
13. Bartesaghi S, Hallen S, Huang L, Svensson PA, Momo RA, Wallin S, Carlsson EK, Forslow A, Seale P, Peng XR. Thermogenic activity of UCP1 in human white fat-derived beige adipocytes. Mol Endocrinol 2015;29:130–9.10.1210/me.2014-1295Search in Google Scholar PubMed PubMed Central
14. Cherian S, Lopaschuk GD, Carvalho E. Cellular cross-talk between epicardial adipose tissue and myocardium in relation to the pathogenesis of cardiovascular disease. Am J Physiol Endocrinol Metab 2012;303:E937–49.10.1152/ajpendo.00061.2012Search in Google Scholar PubMed
15. Iozzo P. Myocardial, perivascular, and epicardial fat. Diabetes Care 2011;34 Suppl 2:S371–9.10.2337/dc11-s250Search in Google Scholar PubMed PubMed Central
16. Chang L, Milton H, Eitzman DT, Chen YE. Paradoxical roles of perivascular adipose tissue in atherosclerosis and hypertension. Circ J 2013;77:11–8.10.1253/circj.CJ-12-1393Search in Google Scholar
17. Lim S, Meigs JB. Links between ectopic fat and vascular disease in humans. Arterioscler Thromb Vasc Biol 2014;34:1820–6.10.1161/ATVBAHA.114.303035Search in Google Scholar PubMed PubMed Central
18. Brown NK, Zhou Z, Zhang J, Zeng R, Wu J, Eitzman DT, Chen YE, Chang L. Perivascular adipose tissue in vascular function and disease: a review of current research and animal models. Arterioscler Thromb Vasc Biol 2014;34:1621–30.10.1161/ATVBAHA.114.303029Search in Google Scholar PubMed PubMed Central
19. Manka D, Chatterjee TK, Stoll LL, Basford JE, Konaniah ES, Srinivasan R, Bogdanov VY, Tang Y, Blomkalns AL, Hui DY, Weintraub NL. Transplanted perivascular adipose tissue accelerates injury-induced neointimal hyperplasia: role of monocyte chemoattractant protein-1. Arterioscler Thromb Vasc Biol 2014;34:1723–30.10.1161/ATVBAHA.114.303983Search in Google Scholar PubMed PubMed Central
20. Omar A, Chatterjee TK, Tang Y, Hui DY, Weintraub NL. Proinflammatory phenotype of perivascular adipocytes. Arterioscler Thromb Vasc Biol 2014;34:1631–6.10.1161/ATVBAHA.114.303030Search in Google Scholar PubMed PubMed Central
21. Owen MK, Noblet JN, Sassoon DJ, Conteh AM, Goodwill AG, Tune JD. Perivascular adipose tissue and coronary vascular disease. Arterioscler Thromb Vasc Biol 2014;34:1643–9.10.1161/ATVBAHA.114.303033Search in Google Scholar PubMed PubMed Central
22. Tano JY, Schleifenbaum J, Gollasch M. Perivascular adipose tissue, potassium channels, and vascular dysfunction. Arterioscler Thromb Vasc Biol 2014;34:1827–30.10.1161/ATVBAHA.114.303032Search in Google Scholar PubMed
23. Withers SB, Bussey CE, Saxton SN, Melrose HM, Watkins AE, Heagerty AM. Mechanisms of adiponectin-associated perivascular function in vascular disease. Arterioscler Thromb Vasc Biol 2014;34:1637–42.10.1161/ATVBAHA.114.303031Search in Google Scholar PubMed
24. Egawa G, Miyachi Y, Kabashima K. Identification of perivascular adipose tissue in the mouse skin using two-photon microscopy. J Dermatol Sci 2013;70:139–40.10.1016/j.jdermsci.2013.02.009Search in Google Scholar PubMed
25. Chang L, Villacorta L, Li R, Hamblin M, Xu W, Dou C, Zhang J, Wu J, Zeng R, Chen YE. Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-gamma deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation 2012;126:1067–78.10.1161/CIRCULATIONAHA.112.104489Search in Google Scholar PubMed PubMed Central
26. Fitzgibbons TP, Kogan S, Aouadi M, Hendricks GM, Straubhaar J, Czech MP. Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation. Am J Physiol Heart Circ Physiol 2011;301:H1425–37.10.1152/ajpheart.00376.2011Search in Google Scholar PubMed PubMed Central
27. Padilla J, Jenkins NT, Vieira-Potter VJ, Laughlin MH. Divergent phenotype of rat thoracic and abdominal perivascular adipose tissues. Am J Physiol Regul Integr Comp Physiol 2013;304:R543–52.10.1152/ajpregu.00567.2012Search in Google Scholar PubMed PubMed Central
28. Mauro CR, Ilonzo G, Nguyen BT, Yu P, Tao M, Gao I, Seidman MA, Nguyen LL, Ozaki CK. Attenuated adiposopathy in perivascular adipose tissue compared with subcutaneous human adipose tissue. Am J Surg 2013;206:241–4.10.1016/j.amjsurg.2012.07.032Search in Google Scholar PubMed PubMed Central
29. Claria J, Nguyen BT, Madenci AL, Ozaki CK, Serhan CN. Diversity of lipid mediators in human adipose tissue depots. Am J Physiol Cell Physiol 2013;304:C1141–9.10.1152/ajpcell.00351.2012Search in Google Scholar PubMed PubMed Central
30. Chatterjee TK, Aronow BJ, Tong WS, Manka D, Tang Y, Bogdanov VY, Unruh D, Blomkalns AL, Piegore MG Jr, Weintraub DS, Rudich SM, Kuhel DG, Hui DY, Weintraub NL. Human coronary artery perivascular adipocytes overexpress genes responsible for regulating vascular morphology, inflammation, and hemostasis. Physiol Genomics 2013;45:697–709.10.1152/physiolgenomics.00042.2013Search in Google Scholar PubMed PubMed Central
31. Lynch FM, Withers SB, Yao Z, Werner ME, Edwards G, Weston AH, Heagerty AM. Perivascular adipose tissue-derived adiponectin activates BK(Ca) channels to induce anticontractile responses. Am J Physiol Heart Circ Physiol 2013;304:H786–95.10.1152/ajpheart.00697.2012Search in Google Scholar PubMed PubMed Central
32. Kohn C, Schleifenbaum J, Szijarto IA, Marko L, Dubrovska G, Huang Y, Gollasch M. Differential effects of cystathionine-gamma-lyase-dependent vasodilatory H2S in periadventitial vasoregulation of rat and mouse aortas. PLoS ONE 2012;7:e41951.10.1371/journal.pone.0041951Search in Google Scholar PubMed PubMed Central
33. Lee RM, Bader M, Alenina N, Santos RA, Gao YJ, Lu C. Mas receptors in modulating relaxation induced by perivascular adipose tissue. Life Sci 2011;89:467–72.10.1016/j.lfs.2011.07.016Search in Google Scholar PubMed
34. Lee YC, Chang HH, Chiang CL, Liu CH, Yeh JI, Chen MF, Chen PY, Kuo JS, Lee TJ. Role of perivascular adipose tissue-derived methyl palmitate in vascular tone regulation and pathogenesis of hypertension. Circulation 2011;124:1160–71.10.1161/CIRCULATIONAHA.111.027375Search in Google Scholar PubMed
35. Szasz T, Bomfim GF, Webb RC. The influence of perivascular adipose tissue on vascular homeostasis. Vasc Health Risk Manag 2013;9:105–16.10.2147/VHRM.S33760Search in Google Scholar PubMed PubMed Central
36. Beltowski J. Endogenous hydrogen sulfide in perivascular adipose tissue: role in the regulation of vascular tone in physiology and pathology. Can J Physiol Pharmacol 2013;91:889–98.10.1139/cjpp-2013-0001Search in Google Scholar PubMed
37. Aghamohammadzadeh R, Withers S, Lynch F, Greenstein A, Malik R, Heagerty A. Perivascular adipose tissue from human systemic and coronary vessels: the emergence of a new pharmacotherapeutic target. Br J Pharmacol 2012;165:670–82.10.1111/j.1476-5381.2011.01479.xSearch in Google Scholar PubMed PubMed Central
38. Malinowski M, Deja MA, Janusiewicz P, Golba KS, Roleder T, Wos S. Mechanisms of vasodilatatory effect of perivascular tissue of human internal thoracic artery. J Physiol Pharmacol 2013;64:309–16.Search in Google Scholar
39. Ozen G, Topal G, Gomez I, Ghorreshi A, Boukais K, Benyahia C, Kanyinda L, Longrois D, Teskin O, Uydes-Dogan BS, Norel X. Control of human vascular tone by prostanoids derived from perivascular adipose tissue. Prostaglandins Other Lipid Mediat 2013;107:13–7.10.1016/j.prostaglandins.2013.06.002Search in Google Scholar PubMed
40. Aghamohammadzadeh R, Greenstein AS, Yadav R, Jeziorska M, Hama S, Soltani F, Pemberton PW, Ammori B, Malik RA, Soran H, Heagerty AM. Effects of bariatric surgery on human small artery function: evidence for reduction in perivascular adipocyte inflammation, and the restoration of normal anticontractile activity despite persistent obesity. J Am Coll Cardiol 2013;62:128–35.10.1016/j.jacc.2013.04.027Search in Google Scholar PubMed PubMed Central
41. Withers SB, Simpson L, Fattah S, Werner ME, Heagerty AM. cGMP-dependent protein kinase (PKG) mediates the anticontractile capacity of perivascular adipose tissue. Cardiovasc Res 2014;101:130–7.10.1093/cvr/cvt229Search in Google Scholar PubMed
42. Weston AH, Egner I, Dong Y, Porter EL, Heagerty AM, Edwards G. Stimulated release of a hyperpolarizing factor (ADHF) from mesenteric artery perivascular adipose tissue: involvement of myocyte BKCa channels and adiponectin. Br J Pharmacol 2013;169:1500–9.10.1111/bph.12157Search in Google Scholar PubMed PubMed Central
43. Chang L, Villacota L, Dou C, Chen E, Zhang J. Perivascular adipose tissue-derived prostaglandins constrict vessel [abstract]. Hypertension 2012;60:A662.10.1161/hyp.60.suppl_1.A662Search in Google Scholar
44. Wilson C. Recent advances in hypertension. Can Med Assoc J 1964;91:964–70.Search in Google Scholar
45. Ayala-Lopez N, Martini M, Jackson WF, Darios E, Burnett R, Seitz B, Fink GD, Watts SW. Perivascular adipose tissue contains functional catecholamines. Pharmacol Res Perspect 2014;2:e00041.10.1002/prp2.41Search in Google Scholar PubMed PubMed Central
46. Meyer MR, Fredette NC, Barton M, Prossnitz ER. Regulation of vascular smooth muscle tone by adipose-derived contracting factor. PLoS ONE 2013;8:e79245.10.1371/journal.pone.0079245Search in Google Scholar PubMed PubMed Central
47. Mendizabal Y, Llorens S, Nava E. Vasoactive effects of prostaglandins from the perivascular fat of mesenteric resistance arteries in WKY and SHROB rats. Life Sci 2013;93:1023–32.10.1016/j.lfs.2013.10.021Search in Google Scholar PubMed
48. Owen MK, Witzmann FA, McKenney ML, Lai X, Berwick ZC, Moberly SP, Alloosh M, Sturek M, Tune JD. Perivascular adipose tissue potentiates contraction of coronary vascular smooth muscle: influence of obesity. Circulation 2013;128:9–18.10.1161/CIRCULATIONAHA.112.001238Search in Google Scholar PubMed PubMed Central
49. Lee MH, Chen SJ, Tsao CM, Wu CC. Perivascular adipose tissue inhibits endothelial function of rat aortas via caveolin-1. PLoS ONE 2014;9:e99947.10.1371/journal.pone.0099947Search in Google Scholar PubMed PubMed Central
50. Watts SW, Dorrance AM, Penfold ME, Rourke JL, Sinal CJ, Seitz B, Sullivan TJ, Charvat TT, Thompson JM, Burnett R, Fink GD. Chemerin connects fat to arterial contraction. Arterioscler Thromb Vasc Biol 2013;33:1320–8.10.1161/ATVBAHA.113.301476Search in Google Scholar PubMed PubMed Central
51. Hai-Mei L, Song-Yin H, Run-Mei L, Xiao-Huang X, Le-Quan Z, Xiao-Ping L, Jin-Wen X. Andrographolide protects against lipopolysaccharide-induced vascular hyporeactivity by suppressing the expression of inducible nitric oxide in periaortic adipose. J Cardiovasc Pharmacol 2013;62:154–9.10.1097/FJC.0b013e31829497eaSearch in Google Scholar PubMed
52. Gil-Ortega M, Condezo-Hoyos L, Garcia-Prieto CF, Arribas SM, Gonzalez MC, Aranguez I, Ruiz-Gayo M, Somoza B, Fernandez-Alfonso MS. Imbalance between pro and anti-oxidant mechanisms in perivascular adipose tissue aggravates long-term high-fat diet-derived endothelial dysfunction. PLoS ONE 2014;9:e95312.10.1371/journal.pone.0095312Search in Google Scholar PubMed PubMed Central
53. Chen Y, Wang X, Mai J, Zhao X, Liang Y, Gu M, Chen Z, Nie R, Wang J. C-reactive protein promotes vascular endothelial dysfunction partly via activating adipose tissue inflammation in hyperlipidemic rabbits. Int J Cardiol 2013;168:2397–403.10.1016/j.ijcard.2013.01.158Search in Google Scholar PubMed
54. Virdis A, Duranti E, Rossi C, Dell’agnello U, Santini E, Anselmino M, Chiarugi M, Taddei S, Solini A. Tumour necrosis factor-alpha participates on the endothelin-1/nitric oxide imbalance in small arteries from obese patients: role of perivascular adipose tissue. Eur Heart J 2014. doi: 10.1093/eurheartj/ehu072.10.1093/eurheartj/ehu072Search in Google Scholar PubMed
55. Wang D, Wang C, Wu X, Zheng W, Sandberg K, Ji H, Welch WJ, Wilcox CS. Endothelial dysfunction and enhanced contractility in microvessels from ovariectomized rats: roles of oxidative stress and perivascular adipose tissue. Hypertension 2014;63:1063–9.10.1161/HYPERTENSIONAHA.113.02284Search in Google Scholar PubMed PubMed Central
56. Schrammel A, Mussbacher M, Wolkart G, Stessel H, Pail K, Winkler S, Schweiger M, Haemmerle G, Al Zoughbi W, Hofler G, Lametschwandtner A, Zechner R, Mayer B. Endothelial dysfunction in adipose triglyceride lipase deficiency. Biochim Biophys Acta 2014;1841:906–17.10.1016/j.bbalip.2014.03.005Search in Google Scholar PubMed PubMed Central
57. Bhattacharya I, Dragert K, Albert V, Contassot E, Damjanovic M, Hagiwara A, Zimmerli L, Humar R, Hall MN, Battegay EJ, Haas E. Rictor in perivascular adipose tissue controls vascular function by regulating inflammatory molecule expression. Arterioscler Thromb Vasc Biol 2013;33:2105–11.10.1161/ATVBAHA.112.301001Search in Google Scholar PubMed
58. Moe KT, Naylynn TM, Yin NO, Khairunnisa K, Allen JC, Wong MC, Chin-Dusting J, Wong P. Tumor necrosis factor-alpha induces aortic intima-media thickening via perivascular adipose tissue inflammation. J Vasc Res 2013;50:228–37.10.1159/000350542Search in Google Scholar PubMed
59. Schroeter MR, Eschholz N, Herzberg S, Jerchel I, Leifheit-Nestler M, Czepluch FS, Chalikias G, Konstantinides S, Schafer K. Leptin-dependent and leptin-independent paracrine effects of perivascular adipose tissue on neointima formation. Arterioscler Thromb Vasc Biol 2013;33:980–7.10.1161/ATVBAHA.113.301393Search in Google Scholar PubMed
60. Tian Z, Miyata K, Tazume H, Sakaguchi H, Kadomatsu T, Horio E, Takahashi O, Komohara Y, Araki K, Hirata Y, Tabata M, Takanashi S, Takeya M, Hao H, Shimabukuro M, Sata M, Kawasuji M, Oike Y. Perivascular adipose tissue-secreted angiopoietin-like protein 2 (Angptl2) accelerates neointimal hyperplasia after endovascular injury. J Mol Cell Cardiol 2013;57:1–12.10.1016/j.yjmcc.2013.01.004Search in Google Scholar PubMed
61. Bailey-Downs LC, Tucsek Z, Toth P, Sosnowska D, Gautam T, Sonntag WE, Csiszar A, Ungvari Z. Aging exacerbates obesity-induced oxidative stress and inflammation in perivascular adipose tissue in mice: a paracrine mechanism contributing to vascular redox dysregulation and inflammation. J Gerontol A Biol Sci Med Sci 2013;68:780–92.10.1093/gerona/gls238Search in Google Scholar PubMed PubMed Central
62. Leopold JA. MicroRNAs regulate vascular medial calcification. Cells 2014;3:963–80.10.3390/cells3040963Search in Google Scholar PubMed PubMed Central
63. Greenland P, Bonow RO, Brundage BH, Budoff MJ, Eisenberg MJ, Grundy SM, Lauer MS, Post WS, Raggi P, Redberg RF, Rodgers GP, Shaw LJ, Taylor AJ, Weintraub WS, Harrington RA, Abrams J, Anderson JL, Bates ER, Grines CL, Hlatky MA, Lichtenberg RC, Lindner JR, Pohost GM, Schofield RS, Shubrooks SJ Jr, Stein JH, Tracy CM, Vogel RA, Wesley DJ; American College of Cardiology Foundation Clinical Expert Consensus Task Force; Society of Atherosclerosis Imaging and Prevention; Society of Cardiovascular Computed Tomography. ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to update the 2000 expert consensus document on electron beam computed tomography). Circulation 2007;115:402–26.10.1161/CIRCULATIONAHA..107.181425Search in Google Scholar PubMed
64. Paloian NJ, Giachelli CM. A current understanding of vascular calcification in CKD. Am J Physiol Renal Physiol 2014;307: F891–900.10.1152/ajprenal.00163.2014Search in Google Scholar PubMed PubMed Central
65. Lehman SJ, Massaro JM, Schlett CL, O’Donnell CJ, Hoffmann U, Fox CS. Peri-aortic fat, cardiovascular disease risk factors, and aortic calcification: the Framingham Heart Study. Atherosclerosis 2010;210:656–61.10.1016/j.atherosclerosis.2010.01.007Search in Google Scholar PubMed PubMed Central
66. Shields KJ, Barinas-Mitchell E, Gingo MR, Tepper P, Goodpaster BH, Kao AH, Manzi S, Sutton-Tyrrell K. Perivascular adipose tissue of the descending thoracic aorta is associated with systemic lupus erythematosus and vascular calcification in women. Atherosclerosis 2013;231:129–35.10.1016/j.atherosclerosis.2013.09.004Search in Google Scholar PubMed PubMed Central
67. Longenecker CT, Jiang Y, Yun CH, Debanne S, Funderburg NT, Lederman MM, Storer N, Labbato DE, Bezerra HG, McComsey GA. Perivascular fat, inflammation, and cardiovascular risk in HIV-infected patients on antiretroviral therapy. Int J Cardiol 2013;168:4039–45.10.1016/j.ijcard.2013.06.059Search in Google Scholar PubMed PubMed Central
68. Seifalian AM, Filippatos TD, Joshi J, Mikhailidis DP. Obesity and arterial compliance alterations. Curr Vasc Pharmacol 2010;8:155–68.10.2174/157016110790886956Search in Google Scholar PubMed
69. Selcuk A, Bulucu F, Kalafat F, Cakar M, Demirbas S, Karaman M, Ay SA, Saglam K, Balta S, Demirkol S, Arslan E. Skinfold thickness as a predictor of arterial stiffness: obesity and fatness linked to higher stiffness measurements in hypertensive patients. Clin Exp Hypertens 2013;35:459–64.10.3109/10641963.2012.746357Search in Google Scholar PubMed
70. Thanassoulis G, Massaro JM, Corsini E, Rogers I, Schlett CL, Meigs JB, Hoffmann U, O’Donnell CJ, Fox CS. Periaortic adipose tissue and aortic dimensions in the Framingham Heart Study. J Am Heart Assoc 2012;1:e000885.10.1161/JAHA.112.000885Search in Google Scholar PubMed PubMed Central
71. Fox CS, Massaro JM, Schlett CL, Lehman SJ, Meigs JB, O’Donnell CJ, Hoffmann U, Murabito JM. Periaortic fat deposition is associated with peripheral arterial disease: the Framingham Heart Study. Circ Cardiovasc Imaging 2010;3:515–9.10.1161/CIRCIMAGING.110.958884Search in Google Scholar PubMed PubMed Central
72. Liu Y, Dang C, Garcia M, Gregersen H, Kassab GS. Surrounding tissues affect the passive mechanics of the vessel wall: theory and experiment. Am J Physiol Heart Circ Physiol 2007;293:H3290–300.10.1152/ajpheart.00666.2007Search in Google Scholar PubMed
73. Kim J, Peruski B, Hunley C, Kwon S, Baek S. Influence of surrounding tissues on biomechanics of aortic wall. Int J Exp Comput Biomech 2013;2:105–17.10.1504/IJECB.2013.056516Search in Google Scholar PubMed PubMed Central
74. Aroor AR, Demarco VG, Jia G, Sun Z, Nistala R, Meininger GA, Sowers JR. The role of tissue renin-angiotensin-aldosterone system in the development of endothelial dysfunction and arterial stiffness. Front Endocrinol (Lausanne) 2013;4:161.10.3389/fendo.2013.00161Search in Google Scholar PubMed PubMed Central
75. Fleenor BS, Eng JS, Sindler AL, Pham BT, Kloor JD, Seals DR. Superoxide signaling in perivascular adipose tissue promotes age-related artery stiffness. Aging Cell 2014;13:576–8.10.1111/acel.12196Search in Google Scholar PubMed PubMed Central
76. Chen JY, Tsai PJ, Tai HC, Tsai RL, Chang YT, Wang MC, Chiou YW, Yeh ML, Tang MJ, Lam CF, Shiesh SC, Li YH, Tsai WC, Chou CH, Lin LJ, Wu HL, Tsai YS. Increased aortic stiffness and attenuated lysyl oxidase activity in obesity. Arterioscler Thromb Vasc Biol 2013;33:839–46.10.1161/ATVBAHA.112.300036Search in Google Scholar PubMed
77. Britton KA, Wang N, Palmisano J, Corsini E, Schlett CL, Hoffmann U, Larson MG, Vasan RS, Vita JA, Mitchell GF, Benjamin EJ, Hamburg NM, Fox CS. Thoracic periaortic and visceral adipose tissue and their cross-sectional associations with measures of vascular function. Obesity (Silver Spring) 2013;21:1496–503.10.1002/oby.20166Search in Google Scholar PubMed PubMed Central
78. Blomkalns AL, Gavrila D, Thomas M, Neltner BS, Blanco VM, Benjamin SB, McCormick ML, Stoll LL, Denning GM, Collins SP, Qin Z, Daugherty A, Cassis LA, Thompson RW, Weiss RM, Lindower PD, Pinney SM, Chatterjee T, Weintraub NL. CD14 directs adventitial macrophage precursor recruitment: role in early abdominal aortic aneurysm formation. J Am Heart Assoc 2013;2:e000065.10.1161/JAHA.112.000065Search in Google Scholar PubMed PubMed Central
79. Li MW, Mian MO, Barhoumi T, Rehman A, Mann K, Paradis P, Schiffrin EL. Endothelin-1 overexpression exacerbates atherosclerosis and induces aortic aneurysms in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 2013;33:2306–15.10.1161/ATVBAHA.113.302028Search in Google Scholar PubMed
80. Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, Goronzy J, Weyand C, Harrison DG. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med 2007;204:2449–60.10.1084/jem.20070657Search in Google Scholar PubMed PubMed Central
81. Kurobe H, Hirata Y, Matsuoka Y, Sugasawa N, Higashida M, Nakayama T, Maxfield MW, Yoshida Y, Shimabukuro M, Kitagawa T, Sata M. Protective effects of selective mineralocorticoid receptor antagonist against aortic aneurysm progression in a novel murine model. J Surg Res 2013;185:455–62.10.1016/j.jss.2013.05.002Search in Google Scholar PubMed
©2015 by De Gruyter
Articles in the same Issue
- Frontmatter
- Topic 2: Impact of Adiposopathy in Cardiovascular and Metabolic Diseases: Endocrine and Clinical Aspects
- Review Articles
- Adiposity and metabolic dysfunction in polycystic ovary syndrome
- Heat shock proteins in obesity: links to cardiovascular disease
- Visceral adiposopathy: a vascular perspective
- The role of perivascular adipose tissue in vasoconstriction, arterial stiffness, and aneurysm
- Original Article
- Natural mineral-rich water ingestion improves hepatic and fat glucocorticoid-signaling and increases sirtuin 1 in an animal model of metabolic syndrome
Articles in the same Issue
- Frontmatter
- Topic 2: Impact of Adiposopathy in Cardiovascular and Metabolic Diseases: Endocrine and Clinical Aspects
- Review Articles
- Adiposity and metabolic dysfunction in polycystic ovary syndrome
- Heat shock proteins in obesity: links to cardiovascular disease
- Visceral adiposopathy: a vascular perspective
- The role of perivascular adipose tissue in vasoconstriction, arterial stiffness, and aneurysm
- Original Article
- Natural mineral-rich water ingestion improves hepatic and fat glucocorticoid-signaling and increases sirtuin 1 in an animal model of metabolic syndrome