Home Nuclear hormone receptors PXR and CAR and metabolic diseases
Article
Licensed
Unlicensed Requires Authentication

Nuclear hormone receptors PXR and CAR and metabolic diseases

  • Li Mo and Jinhan He EMAIL logo
Published/Copyright: July 16, 2014

Abstract

Nuclear receptors (NRs) belong to a superfamily of evolutionarily related DNA-binding transcription factors that can be activated by steroid and thyroid hormones, and other lipid metabolites. Ligand activated NRs can regulate target gene expression by binding to DNA response elements present in the target gene promoters. Through this regulation, NRs are broadly implicated in physiology and metabolism. In this chapter, we will focus on the xenobiotic receptors and their recently discovered functions in metabolic diseases.


Corresponding author: Dr. Jinhan He, Department of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China, Phone: +86-28-85426416, E-mail:

Acknowledgments

This work was supported in part by National Science foundation of China 81270926 (Jinhan He), and Outstanding Scholar Foundation of Sichuan University 2013SCU04A17 (Jinhan He). Li Mo was supported by Health Care Committee Foundation of Health Department, Sichuan Province GB2013101.

References

1. Chambon P. The nuclear receptor superfamily: a personal retrospect on the first two decades. Mol Endocrinol 2005;19:1418–28.10.1210/me.2005-0125Search in Google Scholar PubMed

2. Evans RM. The nuclear receptor superfamily: a rosetta stone for physiology. Mol Endocrinol 2005;19:1429–38.10.1210/me.2005-0046Search in Google Scholar PubMed

3. Germain P, Staels B, Dacquet C, Spedding M, Laudet V. Overview of nomenclature of nuclear receptors. Pharmacol Rev 2006;58:685–704.10.1124/pr.58.4.2Search in Google Scholar PubMed

4. Jensen EV, Khan SA. A two-site model for antiestrogen action. Mech Ageing Dev 2004;125:679–82.10.1016/j.mad.2004.08.006Search in Google Scholar PubMed

5. Jensen EV. On the mechanism of estrogen action. Perspect Biol Med 1962;6:47–59.10.1353/pbm.1963.0005Search in Google Scholar PubMed

6. Green S, Walter P, Kumar V, Krust A, Bornert JM, Argos P, Chambon P. Human oestrogen receptor cDNA. sequence, expression and homology to v-erb-A. Nature 1986;320:134–9.10.1038/320134a0Search in Google Scholar PubMed

7. Greene GL, Gilna P, Waterfield M, Baker A, Hort Y, Shine J. Sequence and expression of human estrogen receptor complementary DNA. Science 1986;231:1150–4.10.1126/science.3753802Search in Google Scholar PubMed

8. Hollenberg SM, Weinberger C, Ong ES, Cerelli G, Oro A, Lebo R, Thompson EB, Rosenfeld MG, Evans RM. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 1985;318:635–41.10.1038/318635a0Search in Google Scholar PubMed PubMed Central

9. Aranda A, Pascual A. Nuclear hormone receptors and gene expression. Physiol Rev 2001;81:1269–304.10.1152/physrev.2001.81.3.1269Search in Google Scholar PubMed

10. Giguere V, Yang N, Segui P, Evans RM. Identification of a new class of steroid hormone receptors. Nature 1988;331:91–4.10.1038/331091a0Search in Google Scholar PubMed

11. Gronemeyer H, Gustafsson JA, Laudet V. Principles for modulation of the nuclear receptor superfamily. Nat Rev Drug Discov 2004;3:950–64.10.1038/nrd1551Search in Google Scholar

12. Bain DL, Heneghan AF, Connaghan-Jones KD, Miura MT. Nuclear receptor structure: implications for function. Annu Rev Physiol 2007;69:201–20.10.1146/annurev.physiol.69.031905.160308Search in Google Scholar

13. Knotts TA, Orkiszewski RS, Cook RG, Edwards DP, Weigel NL. Identification of a phosphorylation site in the hinge region of the human progesterone receptor and additional amino-terminal phosphorylation sites. J Biol Chem 2001;276:8475–83.10.1074/jbc.M009805200Search in Google Scholar

14. Lee YK, Choi YH, Chua S, Park YJ, Moore DD. Phosphorylation of the hinge domain of the nuclear hormone receptor LRH-1 stimulates transactivation. J Biol Chem 2006;281:7850–5.10.1074/jbc.M509115200Search in Google Scholar

15. Li Y, Lambert MH, Xu HE. Activation of nuclear receptors: a perspective from structural genomics. Structure 2003;11:741–6.10.1016/S0969-2126(03)00133-3Search in Google Scholar

16. Warnmark A, Treuter E, Wright AP, Gustafsson JA. Activation functions 1 and 2 of nuclear receptors: molecular strategies for transcriptional activation. Mol Endocrinol 2003;17:1901–9.10.1210/me.2002-0384Search in Google Scholar

17. Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, Greene GL. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 1998;95:927–37.10.1016/S0092-8674(00)81717-1Search in Google Scholar

18. Cairns W, Cairns C, Pongratz I, Poellinger L, Okret S. Assembly of a glucocorticoid receptor complex prior to DNA binding enhances its specific interaction with a glucocorticoid response element. J Biol Chem 1991;266:11221–6.10.1016/S0021-9258(18)99151-9Search in Google Scholar

19. Lee MS, Kliewer SA, Provencal J, Wright PE, Evans RM. Structure of the retinoid X receptor alpha DNA binding domain: a helix required for homodimeric DNA binding. Science 1993;260:1117–21.10.1126/science.8388124Search in Google Scholar PubMed

20. Hard T, Kellenbach E, Boelens R, Maler BA, Dahlman K, Freedman LP, Carlstedt-Duke J, Yamamoto KR, Gustafsson JA, Kaptein R. Solution structure of the glucocorticoid receptor DNA-binding domain. Science 1990;249:157–60.10.1126/science.2115209Search in Google Scholar PubMed

21. Luisi BF, Xu WX, Otwinowski Z, Freedman LP, Yamamoto KR, Sigler PB. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 1991;352:497–505.10.1038/352497a0Search in Google Scholar

22. Baumann H, Paulsen K, Kovacs H, Berglund H, Wright AP, Gustafsson JA, Hard T. Refined solution structure of the glucocorticoid receptor DNA-binding domain. Biochemistry 1993;32:13463–71.10.1021/bi00212a011Search in Google Scholar

23. Bain DL, Franden MA, McManaman JL, Takimoto GS, Horwitz KB. The N-terminal region of the human progesterone A-receptor. Structural analysis and the influence of the DNA binding domain. J Biol Chem 2000;275:7313–20.10.1074/jbc.275.10.7313Search in Google Scholar

24. Birnbaumer M, Schrader WT, O’Malley BW. Assessment of structural similarities in chick oviduct progesterone receptor subunits by partial proteolysis of photoaffinity-labeled proteins. J Biol Chem 1983;258:7331–7.10.1016/S0021-9258(18)32182-3Search in Google Scholar

25. Kliewer SA, Moore JT, Wade L, Staudinger JL, Watson MA, Jones SA, McKee DD, Oliver BB, Willson TM, Zetterstrom RH, Perlmann T, Lehmann JM. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 1998;92:73–82.10.1016/S0092-8674(00)80900-9Search in Google Scholar

26. Blumberg B, Sabbagh W Jr., Juguilon H, Bolado J Jr., van Meter CM, Ong ES, Evans RM. SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes Dev 1998;12:3195–205.10.1101/gad.12.20.3195Search in Google Scholar PubMed PubMed Central

27. Bertilsson G, Heidrich J, Svensson K, Asman M, Jendeberg L, Sydow-Backman M, Ohlsson R, Postlind H, Blomquist P, Berkenstam A. Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc Natl Acad Sci USA 1998;95:12208–13.10.1073/pnas.95.21.12208Search in Google Scholar PubMed PubMed Central

28. Maglich JM, Sluder A, Guan X, Shi Y, McKee DD, Carrick K, Kamdar K, Willson TM, Moore JT. Comparison of complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila genomes. Genome Biol 2001;2:RESEARCH0029.10.1186/gb-2001-2-8-research0029Search in Google Scholar PubMed PubMed Central

29. Lehmann JM, McKee DD, Watson MA, Willson TM, Moore JT, Kliewer SA. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest 1998;102:1016–23.10.1172/JCI3703Search in Google Scholar PubMed PubMed Central

30. Moore LB, Parks DJ, Jones SA, Bledsoe RK, Consler TG, Stimmel JB, Goodwin B, Liddle C, Blanchard SG, Willson TM, Collins JL, Kliewer SA. Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands. J Biol Chem 2000;275:15122–7.10.1074/jbc.M001215200Search in Google Scholar PubMed

31. Kliewer SA, Goodwin B, Willson TM. The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr Rev 2002;23:687–702.10.1210/er.2001-0038Search in Google Scholar

32. Sonoda J, Rosenfeld JM, Xu L, Evans RM, Xie W. A nuclear receptor-mediated xenobiotic response and its implication in drug metabolism and host protection. Curr Drug Metab 2003;4:59–72.10.2174/1389200033336739Search in Google Scholar

33. Xie W, Uppal H, Saini SP, Mu Y, Little JM, Radominska-Pandya A, Zemaitis MA. Orphan nuclear receptor-mediated xenobiotic regulation in drug metabolism. Drug Discov Today 2004;9:442–9.10.1016/S1359-6446(04)03061-2Search in Google Scholar

34. Madabushi R, Frank B, Drewelow B, Derendorf H, Butterweck V. Hyperforin in St. John’s wort drug interactions. Eur J Clin Pharmacol 2006;62:225–33.10.1007/s00228-006-0096-0Search in Google Scholar PubMed

35. Moore LB, Goodwin B, Jones SA, Wisely GB, Serabjit-Singh CJ, Willson TM, Collins JL, Kliewer SA. St. John’s wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc Natl Acad Sci USA 2000;97:7500–2.10.1073/pnas.130155097Search in Google Scholar PubMed PubMed Central

36. Mu Y, Zhang J, Zhang S, Zhou HH, Toma D, Ren S, Huang L, Yaramus M, Baum A, Venkataramanan R, Xie W. Traditional Chinese medicines Wu Wei Zi (Schisandra chinensis Baill) and Gan Cao (Glycyrrhiza uralensis Fisch) activate pregnane X receptor and increase warfarin clearance in rats. J Pharmacol Exp Ther 2006;316:1369–77.10.1124/jpet.105.094342Search in Google Scholar PubMed

37. Goldstein JA. Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br J Clin Pharmacol 2001;52:349–55.10.1046/j.0306-5251.2001.01499.xSearch in Google Scholar PubMed PubMed Central

38. Sinz M, Kim S, Zhu Z, Chen T, Anthony M, Dickinson K, Rodrigues AD. Evaluation of 170 xenobiotics as transactivators of human pregnane X receptor (hPXR) and correlation to known CYP3A4 drug interactions. Curr Drug Metab 2006;7:375–88.10.2174/138920006776873535Search in Google Scholar PubMed

39. Zhang J, Huang W, Qatanani M, Evans RM, Moore DD. The constitutive androstane receptor and pregnane X receptor function coordinately to prevent bile acid-induced hepatotoxicity. J Biol Chem 2004;279:49517–22.10.1074/jbc.M409041200Search in Google Scholar PubMed

40. Xie W, Radominska-Pandya A, Shi Y, Simon CM, Nelson MC, Ong ES, Waxman DJ, Evans RM. An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc Natl Acad Sci USA 2001;98:3375–80.10.1073/pnas.051014398Search in Google Scholar PubMed PubMed Central

41. Staudinger JL, Goodwin B, Jones SA, Hawkins-Brown D, MacKenzie KI, LaTour A, Liu Y, Klaassen CD, Brown KK, Reinhard J, Willson TM, Koller BH, Kliewer SA. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci USA 2001;98:3369–74.10.1073/pnas.051551698Search in Google Scholar

42. Dussault I, Yoo HD, Lin M, Wang E, Fan M, Batta AK, Salen G, Erickson SK, Forman BM. Identification of an endogenous ligand that activates pregnane X receptor-mediated sterol clearance. Proc Natl Acad Sci USA 2003;100:833–8.10.1073/pnas.0336235100Search in Google Scholar

43. Goodwin B, Gauthier KC, Umetani M, Watson MA, Lochansky MI, Collins JL, Leitersdorf E, Mangelsdorf DJ, Kliewer SA, Repa JJ. Identification of bile acid precursors as endogenous ligands for the nuclear xenobiotic pregnane X receptor. Proc Natl Acad Sci USA 2003;100:223–8.10.1073/pnas.0237082100Search in Google Scholar

44. Gong H, Sinz MW, Feng Y, Chen T, Venkataramanan R, Xie W. Animal models of xenobiotic receptors in drug metabolism and diseases. Methods Enzymol 2005;400:598–618.10.1016/S0076-6879(05)00034-0Search in Google Scholar

45. Xie W, Evans RM. Orphan nuclear receptors. The exotics of xenobiotics. J Biol Chem 2001;276:37739–42.10.1074/jbc.R100033200Search in Google Scholar

46. Sonoda J, Xie W, Rosenfeld JM, Barwick JL, Guzelian PS, Evans RM. Regulation of a xenobiotic sulfonation cascade by nuclear pregnane X receptor (PXR). Proc Natl Acad Sci USA 2002;99:13801–6.10.1073/pnas.212494599Search in Google Scholar

47. Stedman CA, Liddle C, Coulter SA, Sonoda J, Alvarez JG, Moore DD, Evans RM, Downes M. Nuclear receptors constitutive androstane receptor and pregnane X receptor ameliorate cholestatic liver injury. Proc Natl Acad Sci USA 2005;102:2063–8.10.1073/pnas.0409794102Search in Google Scholar

48. Uppal H, Toma D, Saini SP, Ren S, Jones TJ, Xie W. Combined loss of orphan receptors PXR and CAR heightens sensitivity to toxic bile acids in mice. Hepatology 2005;41:168–76.10.1002/hep.20512Search in Google Scholar

49. Kadakol A, Ghosh SS, Sappal BS, Sharma G, Chowdhury JR, Chowdhury NR. Genetic lesions of bilirubin uridine-diphosphoglucuronate glucuronosyltransferase (UGT1A1) causing Crigler-Najjar and Gilbert syndromes: correlation of genotype to phenotype. Hum Mutat 2000;16:297–306.10.1002/1098-1004(200010)16:4<297::AID-HUMU2>3.0.CO;2-ZSearch in Google Scholar

50. Tsujii H, Konig J, Rost D, Stockel B, Leuschner U, Keppler D. Exon-intron organization of the human multidrug-resistance protein 2 (MRP2) gene mutated in Dubin-Johnson syndrome. Gastroenterology 1999;117:653–60.10.1016/S0016-5085(99)70459-2Search in Google Scholar

51. Saini SP, Mu Y, Gong H, Toma D, Uppal H, Ren S, Li S, Poloyac SM, Xie W. Dual role of orphan nuclear receptor pregnane X receptor in bilirubin detoxification in mice. Hepatology 2005;41:497–505.10.1002/hep.20570Search in Google Scholar PubMed

52. Klaassen CD, Slitt AL. Regulation of hepatic transporters by xenobiotic receptors. Curr Drug Metab 2005;6:309–28.10.2174/1389200054633826Search in Google Scholar PubMed

53. Cui Y, Konig J, Leier I, Buchholz U, Keppler D. Hepatic uptake of bilirubin and its conjugates by the human organic anion transporter SLC21A6. J Biol Chem 2001;276:9626–30.10.1074/jbc.M004968200Search in Google Scholar PubMed

54. Kartenbeck J, Leuschner U, Mayer R, Keppler D. Absence of the canalicular isoform of the MRP gene-encoded conjugate export pump from the hepatocytes in Dubin-Johnson syndrome. Hepatology 1996;23:1061–6.10.1053/jhep.1996.v23.pm0008621134Search in Google Scholar PubMed

55. Xie W, Yeuh MF, Radominska-Pandya A, Saini SP, Negishi Y, Bottroff BS, Cabrera GY, Tukey RH, Evans RM. Control of steroid, heme, and carcinogen metabolism by nuclear pregnane X receptor and constitutive androstane receptor. Proc Natl Acad Sci USA 2003;100:4150–5.10.1073/pnas.0438010100Search in Google Scholar PubMed PubMed Central

56. Zhai Y, Pai HV, Zhou J, Amico JA, Vollmer RR, Xie W. Activation of pregnane X receptor disrupts glucocorticoid and mineralocorticoid homeostasis. Mol Endocrinol 2007;21:138–47.10.1210/me.2006-0291Search in Google Scholar PubMed

57. He J, Gao J, Xu M, Ren S, Stefanovic-Racic M, O’Doherty RM, Xie W. PXR ablation alleviates diet-induced and genetic obesity and insulin resistance in mice. Diabetes 2013;62:1876–87.10.2337/db12-1039Search in Google Scholar PubMed PubMed Central

58. Spruiell K, Richardson RM, Cullen JM, Awumey EM, Gonzalez FJ, Gyamfi MA. Role of pregnane X receptor in obesity and glucose homeostasis in male mice. J Biol Chem 2014;289:3244–61.10.1074/jbc.M113.494575Search in Google Scholar PubMed PubMed Central

59. Ma Y, Liu D. Activation of pregnane X receptor by pregnenolone 16 alpha-carbonitrile prevents high-fat diet-induced obesity in AKR/J mice. PLoS One 2012;7:e38734.10.1371/journal.pone.0038734Search in Google Scholar PubMed PubMed Central

60. Zhou J, Zhai Y, Mu Y, Gong H, Uppal H, Toma D, Ren S, Evans RM, Xie W. A novel pregnane X receptor-mediated and sterol regulatory element-binding protein-independent lipogenic pathway. J Biol Chem 2006;281:15013–20.10.1074/jbc.M511116200Search in Google Scholar PubMed PubMed Central

61. Baes M, Gulick T, Choi HS, Martinoli MG, Simha D, Moore DD. A new orphan member of the nuclear hormone receptor superfamily that interacts with a subset of retinoic acid response elements. Mol Cell Biol 1994;14:1544–51.Search in Google Scholar

62. Choi HS, Chung M, Tzameli I, Simha D, Lee YK, Seol W, Moore DD. Differential transactivation by two isoforms of the orphan nuclear hormone receptor CAR. J Biol Chem 1997;272:23565–71.10.1074/jbc.272.38.23565Search in Google Scholar

63. Sueyoshi T, Kawamoto T, Zelko I, Honkakoski P, Negishi M. The repressed nuclear receptor CAR responds to phenobarbital in activating the human CYP2B6 gene. J Biol Chem 1999;274:6043–6.10.1074/jbc.274.10.6043Search in Google Scholar

64. Ferguson SS, LeCluyse EL, Negishi M, Goldstein JA. Regulation of human CYP2C9 by the constitutive androstane receptor. discovery of a new distal binding site. Mol Pharmacol 2002;62:737–46.10.1124/mol.62.3.737Search in Google Scholar

65. Wang H, Negishi M. Transcriptional regulation of cytochrome p450 2B genes by nuclear receptors. Curr Drug Metab 2003;4:515–25.10.2174/1389200033489262Search in Google Scholar

66. Trottier E, Belzil A, Stoltz C, Anderson A. Localization of a phenobarbital-responsive element (PBRE) in the 5’- flanking region of the rat CYP2B2 gene. Gene 1995;158:263–8.10.1016/0378-1119(94)00916-GSearch in Google Scholar

67. Park Y, Li H, Kemper B. Phenobarbital induction mediated by a distal CYP2B2 sequence in rat liver transiently transfected in situ. J Biol Chem 1996;271:23725–8.10.1074/jbc.271.39.23725Search in Google Scholar PubMed

68. Honkakoski P, Negishi M. Characterization of a phenobarbital-responsive enhancer module in mouse P450 Cyp2b10 gene. J Biol Chem 1997;272:14943–9.10.1074/jbc.272.23.14943Search in Google Scholar PubMed

69. Honkakoski P, Zelko I, Sueyoshi T, Negishi M. The nuclear orphan receptor CAR-retinoid X receptor heterodimer activates the phenobarbital-responsive enhancer module of the CYP2B gene. Mol Cell Biol 1998;18:5652–8.10.1128/MCB.18.10.5652Search in Google Scholar PubMed PubMed Central

70. Honkakoski P, Negishi M. Protein serine/threonine phosphatase inhibitors suppress phenobarbital-induced Cyp2b10 gene transcription in mouse primary hepatocytes. Biochem J 1998;330:889–95.10.1042/bj3300889Search in Google Scholar PubMed PubMed Central

71. Wei P, Zhang J, Egan-Hafley M, Liang S, Moore DD. The nuclear receptor CAR mediates specific xenobiotic induction of drug metabolism. Nature 2000;407:920–3.10.1038/35038112Search in Google Scholar PubMed

72. Ueda A, Hamadeh HK, Webb HK, Yamamoto Y, Sueyoshi T, Afshari CA, Lehmann JM, Negishi M. Diverse roles of the nuclear orphan receptor CAR in regulating hepatic genes in response to phenobarbital. Mol Pharmacol 2002;61:1–6.10.1124/mol.61.1.1Search in Google Scholar PubMed

73. Chen Y, Ferguson SS, Negishi M, Goldstein JA. Identification of constitutive androstane receptor and glucocorticoid receptor binding sites in the CYP2C19 promoter. Mol Pharmacol 2003;64:316–24.10.1124/mol.64.2.316Search in Google Scholar PubMed

74. Chen Y, Ferguson SS, Negishi M, Goldstein JA. Induction of human CYP2C9 by rifampicin, hyperforin, and phenobarbital is mediated by the pregnane X receptor. J Pharmacol Exp Ther 2004;308:495–501.10.1124/jpet.103.058818Search in Google Scholar PubMed

75. Raucy JL, Mueller L, Duan K, Allen SW, Strom S, Lasker JM. Expression and induction of CYP2C P450 enzymes in primary cultures of human hepatocytes. J Pharmacol Exp Ther 2002;302:475–82.10.1124/jpet.102.033837Search in Google Scholar PubMed

76. Rae JM, Johnson MD, Lippman ME, Flockhart DA. Rifampin is a selective, pleiotropic inducer of drug metabolism genes in human hepatocytes: studies with cDNA and oligonucleotide expression arrays. J Pharmacol Exp Ther 2001;299:849–57.Search in Google Scholar

77. Gerbal-Chaloin S, Pascussi JM, Pichard-Garcia L, Daujat M, Waechter F, Fabre JM, Carrere N, Maurel P. Induction of CYP2C genes in human hepatocytes in primary culture. Drug Metab Dispos 2001;29:242–51.Search in Google Scholar

78. Gerbal-Chaloin S, Daujat M, Pascussi JM, Pichard-Garcia L, Vilarem MJ, Maurel P. Transcriptional regulation of CYP2C9 gene. Role of glucocorticoid receptor and constitutive androstane receptor. J Biol Chem 2002;277:209–17.10.1074/jbc.M107228200Search in Google Scholar PubMed

79. Ferguson SS, Chen Y, LeCluyse EL, Negishi M, Goldstein JA. Human CYP2C8 is transcriptionally regulated by the nuclear receptors constitutive androstane receptor, pregnane X receptor, glucocorticoid receptor, and hepatic nuclear factor 4alpha. Mol Pharmacol 2005;68:747–57.10.1124/mol.105.013169Search in Google Scholar PubMed

80. Jackson JP, Ferguson SS, Negishi M, Goldstein JA. Phenytoin induction of the cyp2c37 gene is mediated by the constitutive androstane receptor. Drug Metab Dispos 2006;34:2003–10.10.1124/dmd.106.012005Search in Google Scholar PubMed PubMed Central

81. Schambach K, Menzel K. [Clinical experiences using phenobarbital in the prevention of hyperbilirubinemia in mature newborn infants in a controlled study]. Z Arztl Fortbild (Jena) 1975;69:535–7.Search in Google Scholar

82. Kopecky P, Schwarz I, Schwenzel W. [Antepartal phenobarbital therapy for the improvement of fetal bilirubin conjugation]. Arch Gynakol 1975;219:455–7.10.1007/BF00669181Search in Google Scholar PubMed

83. Ishii Y, Tsuruda K, Tanaka M, Oguri K. Purification of a phenobarbital-inducible morphine UDP-glucuronyltransferase isoform, absent from Gunn rat liver. Arch Biochem Biophys 1994;315:345–51.10.1006/abbi.1994.1510Search in Google Scholar PubMed

84. Sugatani J, Kojima H, Ueda A, Kakizaki S, Yoshinari K, Gong QH, Owens IS, Negishi M, Sueyoshi T. The phenobarbital response enhancer module in the human bilirubin UDP-glucuronosyltransferase UGT1A1 gene and regulation by the nuclear receptor CAR. Hepatology 2001;33:1232–8.10.1053/jhep.2001.24172Search in Google Scholar PubMed

85. Huang W, Zhang J, Chua SS, Qatanani M, Han Y, Granata R, Moore DD. Induction of bilirubin clearance by the constitutive androstane receptor (CAR). Proc Natl Acad Sci USA 2003;100:4156–61.10.1073/pnas.0630614100Search in Google Scholar

86. Yueh MF, Huang YH, Hiller A, Chen S, Nguyen N, Tukey RH. Involvement of the xenobiotic response element (XRE) in Ah receptor-mediated induction of human UDP-glucuronosyltransferase 1A1. J Biol Chem 2003;278:15001–6.10.1074/jbc.M300645200Search in Google Scholar

87. Kuno T, Togawa H, Mizutani T. Induction of human UGT1A1 by a complex of dexamethasone-GR dependent on proximal site and independent of PBREM. Mol Biol Rep 2008;35:361–7.10.1007/s11033-007-9094-2Search in Google Scholar

88. Synold TW, Dussault I, Forman BM. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med 2001;7:584–90.10.1038/87912Search in Google Scholar

89. Guo GL, Staudinger J, Ogura K, Klaassen CD. Induction of rat organic anion transporting polypeptide 2 by pregnenolone-16alpha-carbonitrile is via interaction with pregnane X receptor. Mol Pharmacol 2002;61:832–9.10.1124/mol.61.4.832Search in Google Scholar

90. Geick A, Eichelbaum M, Burk O. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J Biol Chem 2001;276:14581–7.10.1074/jbc.M010173200Search in Google Scholar

91. Dussault I, Lin M, Hollister K, Wang EH, Synold TW, Forman BM. Peptide mimetic HIV protease inhibitors are ligands for the orphan receptor SXR. J Biol Chem 2001;276:33309–12.10.1074/jbc.C100375200Search in Google Scholar

92. Kast HR, Goodwin B, Tarr PT, Jones SA, Anisfeld AM, Stoltz CM, Tontonoz P, Kliewer S, Willson TM, Edwards PA. Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem 2002;277:2908–15.10.1074/jbc.M109326200Search in Google Scholar

93. Konig J, Nies AT, Cui Y, Leier I, Keppler D. Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochim Biophys Acta 1999;1461:377–94.10.1016/S0005-2736(99)00169-8Search in Google Scholar

94. Staudinger JL, Madan A, Carol KM, Parkinson A. Regulation of drug transporter gene expression by nuclear receptors. Drug Metab Dispos 2003;31:523–7.10.1124/dmd.31.5.523Search in Google Scholar PubMed

95. Maglich JM, Stoltz CM, Goodwin B, Hawkins-Brown D, Moore JT, Kliewer SA. Nuclear pregnane x receptor and constitutive androstane receptor regulate overlapping but distinct sets of genes involved in xenobiotic detoxification. Mol Pharmacol 2002;62:638–46.10.1124/mol.62.3.638Search in Google Scholar PubMed

96. Kawamoto T, Sueyoshi T, Zelko I, Moore R, Washburn K, Negishi M. Phenobarbital-responsive nuclear translocation of the receptor CAR in induction of the CYP2B gene. Mol Cell Biol 1999;19:6318–22.10.1128/MCB.19.9.6318Search in Google Scholar PubMed PubMed Central

97. Gao J, He J, Zhai Y, Wada T, Xie W. The constitutive androstane receptor is an anti-obesity nuclear receptor that improves insulin sensitivity. J Biol Chem 2009;284:25984–92.10.1074/jbc.M109.016808Search in Google Scholar PubMed PubMed Central

98. Gao J, Xie W. Targeting xenobiotic receptors PXR and CAR for metabolic diseases. Trends Pharmacol Sci 2012;33:552–8.10.1016/j.tips.2012.07.003Search in Google Scholar PubMed PubMed Central

99. Dong B, Saha PK, Huang W, Chen W, Abu-Elheiga LA, Wakil SJ, Stevens RD, Ilkayeva O, Newgard CB, Chan L, Moore DD. Activation of nuclear receptor CAR ameliorates diabetes and fatty liver disease. Proc Natl Acad Sci USA 2009;106:18831–6.10.1073/pnas.0909731106Search in Google Scholar PubMed PubMed Central

100. Masuyama H, Hiramatsu Y. Treatment with constitutive androstane receptor ligand during pregnancy prevents insulin resistance in offspring from high-fat diet-induced obese pregnant mice. Am J Physiol Endocrinol Metab 2012;303:E293–300.10.1152/ajpendo.00167.2012Search in Google Scholar PubMed

101. Masuyama H, Hiramatsu Y. Treatment with a constitutive androstane receptor ligand ameliorates the signs of preeclampsia in high-fat diet-induced obese pregnant mice. Mol Cell Endocrinol 2012;348:120–7.10.1016/j.mce.2011.07.047Search in Google Scholar PubMed

102. Tamashiro KL, Terrillion CE, Hyun J, Koenig JI, Moran TH. Prenatal stress or high-fat diet increases susceptibility to diet-induced obesity in rat offspring. Diabetes 2009;58:1116–25.10.2337/db08-1129Search in Google Scholar PubMed PubMed Central

103. Roth A, Looser R, Kaufmann M, Blattler SM, Rencurel F, Huang W, Moore DD, Meyer UA. Regulatory cross-talk between drug metabolism and lipid homeostasis: constitutive androstane receptor and pregnane X receptor increase Insig-1 expression. Mol Pharmacol 2008;73:1282–9.10.1124/mol.107.041012Search in Google Scholar PubMed

104. Zhai Y, Wada T, Zhang B, Khadem S, Ren S, Kuruba R, Li S, Xie W. A functional cross-talk between liver X receptor-alpha and constitutive androstane receptor links lipogenesis and xenobiotic responses. Mol Pharmacol 2010;78:666–74.10.1124/mol.110.064618Search in Google Scholar PubMed PubMed Central

105. Sberna AL, Assem M, Xiao R, Ayers S, Gautier T, Guiu B, Deckert V, Chevriaux A, Grober J, Le Guern N, Pais de Barros JP, Moore DD, Lagrost L, Masson D. Constitutive androstane receptor activation decreases plasma apolipoprotein B-containing lipoproteins and atherosclerosis in low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 2011;31:2232–9.10.1161/ATVBAHA.110.222497Search in Google Scholar PubMed PubMed Central

106. Sberna AL, Assem M, Gautier T, Grober J, Guiu B, Jeannin A, Pais de Barros JP, Athias A, Lagrost L, Masson D. Constitutive androstane receptor activation stimulates faecal bile acid excretion and reverse cholesterol transport in mice. J Hepatol 2011;55:154–61.10.1016/j.jhep.2010.10.029Search in Google Scholar PubMed

Received: 2014-1-26
Accepted: 2014-6-19
Published Online: 2014-7-16
Published in Print: 2014-8-1

©2014 by De Gruyter

Downloaded on 30.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hmbci-2014-0006/html
Scroll to top button