Abstract
Adipocytes are specialized cells that function to store energy in the form of lipids, predominantly triglycerides (TGs), and as a regulatory system contributing to metabolic homoeostasis through the production and secretion of hormones and cytokines. The regulation of lipid homeostasis by adipose tissue is an important aspect of whole-body metabolism. Owing to the central nature of adipose tissue in lipid metabolism, dysregulation has wide-ranging effects, contributing to disorders as diverse as diabetes, cardiovascular disease, cancer, and neurodegeneration. Excess lipids are stored in specialized organelles called lipid droplets (LDs). The surface of the lipid droplet can be considered a highly regulated membrane domain that both protects the contents of the LD from unregulated lipolysis and the cell from the cytotoxic effects of elevated free fatty acids. The surface of the LD is coated with a variety of regulatory proteins, either resident or transiently associated, including enzymes involved in the breakdown of TG, lipid transport proteins, and cofactors. Recent studies have begun to unravel the range of LD-associated proteins and to define their functional significance. Importantly, the involvement of LD proteins in pathophysiological disorders is beginning to be understood. This review will outline recent advances in defining the diversity of LD-associated proteins and their links to metabolic disorders including the integral membrane protein, caveolin-1 (CAV1). Analysis of the role of CAV1 in adipose tissue has highlighted the interconnectedness between the regulation of lipid storage and the function of the adipocyte plasma membrane.
References
1. Klaus S. Adipose tissue as a regulator of energy balance. Curr Drug Targets 2004;5:241–50.10.2174/1389450043490523Search in Google Scholar PubMed
2. Hajer GR, van Haeften TW, Visseren FL. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 2008;29:2959–71.10.1093/eurheartj/ehn387Search in Google Scholar PubMed
3. Vongsuvanh R, George J, Qiao L, van der Poorten D. Visceral adiposity in gastrointestinal and hepatic carcinogenesis. Cancer Lett 2013;330:1–10.10.1016/j.canlet.2012.11.038Search in Google Scholar PubMed
4. Feng B, Zhang T, Xu H. Human adipose dynamics and metabolic health. Ann NY Acad Sci 2013;1281:160–77.10.1111/nyas.12009Search in Google Scholar PubMed PubMed Central
5. Suganami T, Tanaka M, Ogawa Y. Adipose tissue inflammation and ectopic lipid accumulation. Endocr J 2012;59:849–57.10.1507/endocrj.EJ12-0271Search in Google Scholar
6. Arner P, Bernard S, Salehpour M, Possnert G, Liebl J, Steier P, Buchholz BA, Eriksson M, Arner E, Hauner H, Skurk T, Ryden M, Frayn KN, Spalding KL. Dynamics of human adipose lipid turnover in health and metabolic disease. Nature 2011;478:110–3.10.1038/nature10426Search in Google Scholar PubMed PubMed Central
7. Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, Blomqvist L, Hoffstedt J, Naslund E, Britton T, Concha H, Hassan M, Ryden M, Frisen J, Arner P. Dynamics of fat cell turnover in humans. Nature 2008;453:783–7.10.1038/nature06902Search in Google Scholar PubMed
8. Farese RV Jr., Walther TC. Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 2009;139:855–60.10.1016/j.cell.2009.11.005Search in Google Scholar PubMed PubMed Central
9. Martin S, Parton RG. Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 2006;7:373–8.10.1038/nrm1912Search in Google Scholar PubMed
10. Murphy S, Martin S, Parton RG. Lipid droplet-organelle interactions; sharing the fats. Biochim Biophys Acta 2009;1791:441–7.10.1016/j.bbalip.2008.07.004Search in Google Scholar PubMed
11. Martin S, Parton RG. Caveolin, cholesterol, and lipid bodies. Semin Cell Dev Biol 2005;16:163–74.10.1016/j.semcdb.2005.01.007Search in Google Scholar PubMed
12. Fernandez-Rojo MA, Restall C, Ferguson C, Martel N, Martin S, Bosch M, Kassan A, Leong GM, Martin SD, McGee SL, Muscat GE, Anderson RL, Enrich C, Pol A, Parton RG. Caveolin-1 orchestrates the balance between glucose and lipid-dependent energy metabolism: implications for liver regeneration. Hepatology 2012;55:1574–84.10.1002/hep.24810Search in Google Scholar PubMed
13. Brasaemle DL. Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 2007;48:2547–59.10.1194/jlr.R700014-JLR200Search in Google Scholar PubMed
14. Coleman RA, Mashek DG. Mammalian triacylglycerol metabolism: synthesis, lipolysis, and signaling. Chem Rev 2011;111:6359–86.10.1021/cr100404wSearch in Google Scholar PubMed PubMed Central
15. Arner P, Langin D. The role of neutral lipases in human adipose tissue lipolysis. Curr Opin Lipidol 2007;18:246–50.10.1097/MOL.0b013e32811e16fbSearch in Google Scholar PubMed
16. Zechner R, Kienesberger PC, Haemmerle G, Zimmermann R, Lass A. Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J Lipid Res 2009;50:3–21.10.1194/jlr.R800031-JLR200Search in Google Scholar PubMed
17. Granneman JG, Moore HP, Granneman RL, Greenberg AS, Obin MS, Zhu Z. Analysis of lipolytic protein trafficking and interactions in adipocytes. J Biol Chem 2007;282:5726–35.10.1074/jbc.M610580200Search in Google Scholar PubMed
18. Granneman JG, Moore HP, Krishnamoorthy R, Rathod M. Perilipin controls lipolysis by regulating the interactions of AB-hydrolase containing 5 (Abhd5) and adipose triglyceride lipase (Atgl). J Biol Chem 2009;284:34538–44.10.1074/jbc.M109.068478Search in Google Scholar PubMed PubMed Central
19. Yamaguchi T, Omatsu N, Morimoto E, Nakashima H, Ueno K, Tanaka T, Satouchi K, Hirose F, Osumi T. CGI-58 facilitates lipolysis on lipid droplets but is not involved in the vesiculation of lipid droplets caused by hormonal stimulation. J Lipid Res 2007;48:1078–89.10.1194/jlr.M600493-JLR200Search in Google Scholar PubMed
20. Girousse A, Langin D. Adipocyte lipases and lipid droplet-associated proteins: insight from transgenic mouse models. Int J Obes (Lond) 2012;36:581–94.10.1038/ijo.2011.113Search in Google Scholar PubMed
21. Schweiger M, Lass A, Zimmermann R, Eichmann TO, Zechner R. Neutral lipid storage disease: genetic disorders caused by mutations in adipose triglyceride lipase/PNPLA2 or CGI-58/ABHD5. Am J Physiol Endocrinol Metab 2009;297:E289–96.10.1152/ajpendo.00099.2009Search in Google Scholar PubMed
22. Radner FP, Streith IE, Schoiswohl G, Schweiger M, Kumari M, Eichmann TO, Rechberger G, Koefeler HC, Eder S, Schauer S, Theussl HC, Preiss-Landl K, Lass A, Zimmermann R, Hoefler G, Zechner R, Haemmerle G. Growth retardation, impaired triacylglycerol catabolism, hepatic steatosis, and lethal skin barrier defect in mice lacking comparative gene identification-58 (CGI-58). J Biol Chem 2010;285:7300–11.10.1074/jbc.M109.081877Search in Google Scholar PubMed PubMed Central
23. Lass A, Zimmermann R, Haemmerle G, Riederer M, Schoiswohl G, Schweiger M, Kienesberger P, Strauss JG, Gorkiewicz G, Zechner R. Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell Metab 2006;3:309–19.10.1016/j.cmet.2006.03.005Search in Google Scholar PubMed
24. Lefevre C, Jobard F, Caux F, Bouadjar B, Karaduman A, Heilig R, Lakhdar H, Wollenberg A, Verret JL, Weissenbach J, Ozguc M, Lathrop M, Prud’homme JF, Fischer J. Mutations in CGI-58, the gene encoding a new protein of the esterase/lipase/thioesterase subfamily, in Chanarin-Dorfman syndrome. Am J Hum Genet 2001;69:1002–12.10.1086/324121Search in Google Scholar PubMed PubMed Central
25. Londos C, Sztalryd C, Tansey JT, Kimmel AR. Role of PAT proteins in lipid metabolism. Biochimie 2005;87:45–9.10.1016/j.biochi.2004.12.010Search in Google Scholar PubMed
26. Anthonsen MW, Ronnstrand L, Wernstedt C, Degerman E, Holm C. Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro. J Biol Chem 1998;273:215–21.10.1074/jbc.273.1.215Search in Google Scholar PubMed
27. Egan JJ, Greenberg AS, Chang MK, Wek SA, Moos MC, Jr., Londos C. Mechanism of hormone-stimulated lipolysis in adipocytes: translocation of hormone-sensitive lipase to the lipid storage droplet. Proc Natl Acad Sci USA 1992;89:8537–41.10.1073/pnas.89.18.8537Search in Google Scholar PubMed PubMed Central
28. Martin S, Okano S, Kistler C, Fernandez-Rojo MA, Hill MM, Parton RG. Spatiotemporal regulation of early lipolytic signaling in adipocytes. J Biol Chem 2009;284:32097–107.10.1074/jbc.M109.002675Search in Google Scholar PubMed PubMed Central
29. Su CL, Sztalryd C, Contreras JA, Holm C, Kimmel AR, Londos C. Mutational analysis of the hormone-sensitive lipase translocation reaction in adipocytes. J Biol Chem 2003;278:43615–9.10.1074/jbc.M301809200Search in Google Scholar PubMed
30. Garton AJ, Campbell DG, Carling D, Hardie DG, Colbran RJ, Yeaman SJ. Phosphorylation of bovine hormone-sensitive lipase by the AMP-activated protein kinase. A possible antilipolytic mechanism. Eur J Biochem 1989;179:249–54.10.1111/j.1432-1033.1989.tb14548.xSearch in Google Scholar PubMed
31. Shen WJ, Sridhar K, Bernlohr DA, Kraemer FB. Interaction of rat hormone-sensitive lipase with adipocyte lipid-binding protein. Proc Natl Acad Sci USA 1999;96:5528–32.10.1073/pnas.96.10.5528Search in Google Scholar PubMed PubMed Central
32. Smith AJ, Sanders MA, Thompson BR, Londos C, Kraemer FB, Bernlohr DA. Physical association between the adipocyte fatty acid-binding protein and hormone-sensitive lipase: a fluorescence resonance energy transfer analysis. J Biol Chem 2004;279:52399–405.10.1074/jbc.M410301200Search in Google Scholar PubMed
33. Smathers RL, Petersen DR. The human fatty acid-binding protein family: evolutionary divergences and functions. Hum Genomics 2011;5:170–91.10.1186/1479-7364-5-3-170Search in Google Scholar PubMed PubMed Central
34. Jenkins-Kruchten AE, Bennaars-Eiden A, Ross JR, Shen WJ, Kraemer FB, Bernlohr DA. Fatty acid-binding protein-hormone-sensitive lipase interaction. Fatty acid dependence on binding. J Biol Chem 2003;278:47636–43.10.1074/jbc.M307680200Search in Google Scholar PubMed
35. Smith AJ, Thompson BR, Sanders MA, Bernlohr DA. Interaction of the adipocyte fatty acid-binding protein with the hormone-sensitive lipase: regulation by fatty acids and phosphorylation. J Biol Chem 2007;282:32424–32.10.1074/jbc.M703730200Search in Google Scholar PubMed
36. Hansson O, Strom K, Guner N, Wierup N, Sundler F, Hoglund P, Holm C. Inflammatory response in white adipose tissue in the non-obese hormone-sensitive lipase null mouse model. J Proteome Res 2006;5:1701–10.10.1021/pr060101hSearch in Google Scholar PubMed
37. Granneman JG, Li P, Zhu Z, Lu Y. Metabolic and cellular plasticity in white adipose tissue I: effects of beta3-adrenergic receptor activation. Am J Physiol Endocrinol Metab 2005;289:E608–16.10.1152/ajpendo.00009.2005Search in Google Scholar PubMed
38. Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol 2000;279:C670–81.10.1152/ajpcell.2000.279.3.C670Search in Google Scholar PubMed
39. Koh YJ, Park BH, Park JH, Han J, Lee IK, Park JW, Koh GY. Activation of PPAR gamma induces profound multilocularization of adipocytes in adult mouse white adipose tissues. Exp Mol Med 2009;41:880–95.10.3858/emm.2009.41.12.094Search in Google Scholar PubMed PubMed Central
40. Marcinkiewicz A, Gauthier D, Garcia A, Brasaemle DL. The phosphorylation of serine 492 of perilipin a directs lipid droplet fragmentation and dispersion. J Biol Chem 2006;281:11901–9.10.1074/jbc.M600171200Search in Google Scholar PubMed
41. Ariotti N, Murphy S, Hamilton NA, Wu L, Green K, Schieber NL, Li P, Martin S, Parton RG. Postlipolytic insulin-dependent remodeling of micro lipid droplets in adipocytes. Mol Biol Cell 2012;23:1826–37.10.1091/mbc.e11-10-0847Search in Google Scholar PubMed PubMed Central
42. Martin S, Driessen K, Nixon SJ, Zerial M, Parton RG. Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism. J Biol Chem 2005;280:42325–35.10.1074/jbc.M506651200Search in Google Scholar PubMed
43. Yang H, Galea A, Sytnyk V, Crossley M. Controlling the size of lipid droplets: lipid and protein factors. Curr Opin Cell Biol 2012;24:509–16.10.1016/j.ceb.2012.05.012Search in Google Scholar PubMed
44. McFie PJ, Banman SL, Kary S, Stone SJ. Murine diacylglycerol acyltransferase-2 (DGAT2) can catalyze triacylglycerol synthesis and promote lipid droplet formation independent of its localization to the endoplasmic reticulum. J Biol Chem 2011;286:28235–46.10.1074/jbc.M111.256008Search in Google Scholar PubMed PubMed Central
45. Stone SJ, Levin MC, Zhou P, Han J, Walther TC, Farese RV Jr. The endoplasmic reticulum enzyme DGAT2 is found in mitochondria-associated membranes and has a mitochondrial targeting signal that promotes its association with mitochondria. J Biol Chem 2009;284:5352–61.10.1074/jbc.M805768200Search in Google Scholar PubMed PubMed Central
46. Wilfling F, Wang H, Haas JT, Krahmer N, Gould TJ, Uchida A, Cheng JX, Graham M, Christiano R, Frohlich F, Liu X, Buhman KK, Coleman RA, Bewersdorf J, Farese RV, Jr., Walther TC. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell 2013;24:384–99.10.1016/j.devcel.2013.01.013Search in Google Scholar PubMed PubMed Central
47. Jacquier N, Choudhary V, Mari M, Toulmay A, Reggiori F, Schneiter R. Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Sci 2011;124:2424–37.10.1242/jcs.076836Search in Google Scholar PubMed
48. Kuerschner L, Moessinger C, Thiele C. Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic 2008;9:338–52.10.1111/j.1600-0854.2007.00689.xSearch in Google Scholar PubMed
49. Bartz R, Li WH, Venables B, Zehmer JK, Roth MR, Welti R, Anderson RG, Liu P, Chapman KD. Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J Lipid Res 2007;48:837–47.10.1194/jlr.M600413-JLR200Search in Google Scholar PubMed
50. Tauchi-Sato K, Ozeki S, Houjou T, Taguchi R, Fujimoto T. The surface of lipid droplets is a phospholipid monolayer with a unique Fatty Acid composition. J Biol Chem 2002;277:44507–12.10.1074/jbc.M207712200Search in Google Scholar PubMed
51. Guo Y, Walther TC, Rao M, Stuurman N, Goshima G, Terayama K, Wong JS, Vale RD, Walter P, Farese RV. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 2008;453:657–61.10.1038/nature06928Search in Google Scholar PubMed PubMed Central
52. Krahmer N, Guo Y, Wilfling F, Hilger M, Lingrell S, Heger K, Newman HW, Schmidt-Supprian M, Vance DE, Mann M, Farese RV Jr., Walther TC. Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase. Cell Metab 2011;14:504–15.10.1016/j.cmet.2011.07.013Search in Google Scholar PubMed PubMed Central
53. Moessinger C, Kuerschner L, Spandl J, Shevchenko A, Thiele C. Human lysophosphatidylcholine acyltransferases 1 and 2 are located in lipid droplets where they catalyze the formation of phosphatidylcholine. J Biol Chem 2011;286:21330–9.10.1074/jbc.M110.202424Search in Google Scholar PubMed PubMed Central
54. Murphy S, Martin S, Parton RG. Quantitative analysis of lipid droplet fusion: inefficient steady state fusion but rapid stimulation by chemical fusogens. PLoS One 2010;5:e15030.10.1371/journal.pone.0015030Search in Google Scholar PubMed PubMed Central
55. Bostrom P, Andersson L, Rutberg M, Perman J, Lidberg U, Johansson BR, Fernandez-Rodriguez J, Ericson J, Nilsson T, Boren J, Olofsson SO. SNARE proteins mediate fusion between cytosolic lipid droplets and are implicated in insulin sensitivity. Nat Cell Biol 2007;9:1286–93.10.1038/ncb1648Search in Google Scholar PubMed
56. Gong J, Sun Z, Wu L, Xu W, Schieber N, Xu D, Shui G, Yang H, Parton RG, Li P. Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. J Cell Biol 2011;195:953–63.10.1083/jcb.201104142Search in Google Scholar PubMed PubMed Central
57. Paar M, Jungst C, Steiner NA, Magnes C, Sinner F, Kolb D, Lass A, Zimmermann R, Zumbusch A, Kohlwein SD, Wolinski H. Remodeling of lipid droplets during lipolysis and growth in adipocytes. J Biol Chem 2012;287:11164–73.10.1074/jbc.M111.316794Search in Google Scholar PubMed PubMed Central
58. Puri V, Konda S, Ranjit S, Aouadi M, Chawla A, Chouinard M, Chakladar A, Czech MP. Fat-specific protein 27, a novel lipid droplet protein that enhances triglyceride storage. J Biol Chem 2007;282:34213–8.10.1074/jbc.M707404200Search in Google Scholar PubMed
59. Keller P, Petrie JT, De Rose P, Gerin I, Wright WS, Chiang SH, Nielsen AR, Fischer CP, Pedersen BK, MacDougald OA. Fat-specific protein 27 regulates storage of triacylglycerol. J Biol Chem 2008;283:14355–65.10.1074/jbc.M708323200Search in Google Scholar PubMed PubMed Central
60. Nishino N, Tamori Y, Tateya S, Kawaguchi T, Shibakusa T, Mizunoya W, Inoue K, Kitazawa R, Kitazawa S, Matsuki Y, Hiramatsu R, Masubuchi S, Omachi A, Kimura K, Saito M, Amo T, Ohta S, Yamaguchi T, Osumi T, Cheng J, Fujimoto T, Nakao H, Nakao K, Aiba A, Okamura H, Fushiki T, Kasuga M. FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J Clin Invest 2008;118:2808–21.10.1172/JCI34090Search in Google Scholar PubMed PubMed Central
61. Bartz R, Zehmer JK, Zhu M, Chen Y, Serrero G, Zhao Y, Liu P. Dynamic activity of lipid droplets: protein phosphorylation and GTP-mediated protein translocation. J Proteome Res 2007;6:3256–65.10.1021/pr070158jSearch in Google Scholar PubMed
62. Beller M, Riedel D, Jansch L, Dieterich G, Wehland J, Jackle H, Kuhnlein RP. Characterization of the Drosophila lipid droplet subproteome. Mol Cell Proteomics 2006;5:1082–94.10.1074/mcp.M600011-MCP200Search in Google Scholar PubMed
63. Brasaemle DL, Dolios G, Shapiro L, Wang R. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 2004;279:46835–42.10.1074/jbc.M409340200Search in Google Scholar PubMed
64. Larsson S, Resjo S, Gomez MF, James P, Holm C. Characterization of the lipid droplet proteome of a clonal insulin-producing beta-cell line (INS-1 832/13). J Proteome Res 2012;11:1264–73.10.1021/pr200957pSearch in Google Scholar PubMed
65. Sato S, Fukasawa M, Yamakawa Y, Natsume T, Suzuki T, Shoji I, Aizaki H, Miyamura T, Nishijima M. Proteomic profiling of lipid droplet proteins in hepatoma cell lines expressing hepatitis C virus core protein. J Biochem 2006;139:921–30.10.1093/jb/mvj104Search in Google Scholar PubMed
66. Yang L, Ding Y, Chen Y, Zhang S, Huo C, Wang Y, Yu J, Zhang P, Na H, Zhang H, Ma Y, Liu P. The proteomics of lipid droplets: structure, dynamics, and functions of the organelle conserved from bacteria to humans. J Lipid Res 2012;53:1245–53.10.1194/jlr.R024117Search in Google Scholar PubMed PubMed Central
67. Zhang H, Wang Y, Li J, Yu J, Pu J, Li L, Zhang H, Zhang S, Peng G, Yang F, Liu P. Proteome of skeletal muscle lipid droplet reveals association with mitochondria and apolipoprotein a-I. J Proteome Res 2011;10:4757–68.10.1021/pr200553cSearch in Google Scholar PubMed
68. Bastiani M, Parton RG. Caveolae at a glance. J Cell Sci 2010;123:3831–6.10.1242/jcs.070102Search in Google Scholar PubMed
69. Thorn H, Stenkula KG, Karlsson M, Ortegren U, Nystrom FH, Gustavsson J, Stralfors P. Cell surface orifices of caveolae and localization of caveolin to the necks of caveolae in adipocytes. Mol Biol Cell 2003;14:3967–76.10.1091/mbc.e03-01-0050Search in Google Scholar PubMed PubMed Central
70. Fan JY, Carpentier JL, van Obberghen E, Grunfeld C, Gorden P, Orci L. Morphological changes of the 3T3-L1 fibroblast plasma membrane upon differentiation to the adipocyte form. J Cell Sci 1983;61:219–30.10.1242/jcs.61.1.219Search in Google Scholar PubMed
71. Kim CA, Delepine M, Boutet E, El Mourabit H, Le Lay S, Meier M, Nemani M, Bridel E, Leite CC, Bertola DR, Semple RK, O’Rahilly S, Dugail I, Capeau J, Lathrop M, Magre J. Association of a homozygous nonsense caveolin-1 mutation with Berardinelli-Seip congenital lipodystrophy. J Clin Endocrinol Metab 2008;93:1129–34.10.1210/jc.2007-1328Search in Google Scholar PubMed
72. Martin S, Fernandez-Rojo MA, Stanley AC, Bastiani M, Okano S, Nixon SJ, Thomas G, Stow JL, Parton RG. Caveolin-1 deficiency leads to increased susceptibility to cell death and fibrosis in white adipose tissue: characterization of a lipodystrophic model. PLoS One 2012;7:e46242.10.1371/journal.pone.0046242Search in Google Scholar PubMed PubMed Central
73. Mattsson CL, Andersson ER, Nedergaard J. Differential involvement of caveolin-1 in brown adipocyte signaling: impaired beta3-adrenergic, but unaffected LPA, PDGF and EGF receptor signaling. Biochim Biophys Acta 2010;1803:983–9.10.1016/j.bbamcr.2010.03.015Search in Google Scholar PubMed
74. Razani B, Combs TP, Wang XB, Frank PG, Park DS, Russell RG, Li M, Tang B, Jelicks LA, Scherer PE, Lisanti MP. Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J Biol Chem 2002;277:8635–47.10.1074/jbc.M110970200Search in Google Scholar PubMed
75. Asterholm IW, Mundy DI, Weng J, Anderson RG, Scherer PE. Altered mitochondrial function and metabolic inflexibility associated with loss of caveolin-1. Cell Metab 2012;15:171–85.10.1016/j.cmet.2012.01.004Search in Google Scholar PubMed PubMed Central
76. Trigatti BL, Anderson RG, Gerber GE. Identification of caveolin-1 as a fatty acid binding protein. Biochem Biophys Res Commun 1999;255:34–9.10.1006/bbrc.1998.0123Search in Google Scholar PubMed
77. Murata M, Peranen J, Schreiner R, Wieland F, Kurzchalia TV, Simons K. VIP21/caveolin is a cholesterol-binding protein. Proc Natl Acad Sci USA 1995;92:10339–43.10.1073/pnas.92.22.10339Search in Google Scholar PubMed PubMed Central
78. Pol A, Martin S, Fernandez MA, Ingelmo-Torres M, Ferguson C, Enrich C, Parton RG. Cholesterol and fatty acids regulate dynamic caveolin trafficking through the Golgi complex and between the cell surface and lipid bodies. Mol Biol Cell 2005;16:2091–105.10.1091/mbc.e04-08-0737Search in Google Scholar PubMed PubMed Central
79. Pol A, Martin S, Fernandez MA, Ferguson C, Carozzi A, Luetterforst R, Enrich C, Parton RG. Dynamic and regulated association of caveolin with lipid bodies: modulation of lipid body motility and function by a dominant negative mutant. Mol Biol Cell 2004;15:99–110.10.1091/mbc.e03-06-0368Search in Google Scholar PubMed PubMed Central
80. Meshulam T, Breen MR, Liu L, Parton RG, Pilch PF. Caveolins/caveolae protect adipocytes from fatty acid-mediated lipotoxicity. J Lipid Res 2011;52:1526–32.10.1194/jlr.M015628Search in Google Scholar PubMed PubMed Central
81. Ost A, Ortegren U, Gustavsson J, Nystrom FH, Stralfors P. Triacylglycerol is synthesized in a specific subclass of caveolae in primary adipocytes. J Biol Chem 2005;280:5–8.10.1074/jbc.C400429200Search in Google Scholar PubMed
82. Zhu H, Lin P, De G, Choi KH, Takeshima H, Weisleder N, Ma J. Polymerase transcriptase release factor (PTRF) anchors MG53 protein to cell injury site for initiation of membrane repair. J Biol Chem 2011;286:12820–4.10.1074/jbc.C111.221440Search in Google Scholar PubMed PubMed Central
83. Bernatchez PN, Sharma A, Kodaman P, Sessa WC. Myoferlin is critical for endocytosis in endothelial cells. Am J Physiol Cell Physiol 2009;297:C484–92.10.1152/ajpcell.00498.2008Search in Google Scholar PubMed PubMed Central
84. Cai C, Weisleder N, Ko JK, Komazaki S, Sunada Y, Nishi M, Takeshima H, Ma J. Membrane repair defects in muscular dystrophy are linked to altered interaction between MG53, caveolin-3, dysferlin. J Biol Chem 2009;284:15894–902.10.1074/jbc.M109.009589Search in Google Scholar PubMed PubMed Central
85. Rae J, Fontaine F, Salim AA, Lo HP, Capon RJ, Parton RG, Martin S. High-throughput screening of Australian marine organism extracts for bioactive molecules affecting the cellular storage of neutral lipids. PLoS One 2011;6:e22868.10.1371/journal.pone.0022868Search in Google Scholar PubMed PubMed Central
86. Salim AA, Rae J, Fontaine F, Conte MM, Khalil Z, Martin S, Parton RG, Capon RJ. Heterofibrins: inhibitors of lipid droplet formation from a deep-water southern Australian marine sponge, Spongia (Heterofibria) sp. Org Biomol Chem 2010;8:3188–94.10.1039/c003840gSearch in Google Scholar PubMed
©2013 by Walter de Gruyter Berlin Boston
Articles in the same Issue
- Masthead
- Masthead
- Editorial Preface
- Pathophysiology of adipose tissue: effects of steroid hormones. Part B
- Topic 1: Adipose Tissue, Lipids, and Steroid Hormones: Clinical and Pathophysiological Impacts
- Review Articles
- Steroid hormones and the stroma-vascular cells of the adipose tissue
- Caveolae, lipid droplets, and adipose tissue biology: pathophysiological aspects
- Adipose tissue inflammation and metabolic dysfunction: a clinical perspective
- Pregnancy, obesity and insulin resistance: maternal overnutrition and the target windows of fetal development
Articles in the same Issue
- Masthead
- Masthead
- Editorial Preface
- Pathophysiology of adipose tissue: effects of steroid hormones. Part B
- Topic 1: Adipose Tissue, Lipids, and Steroid Hormones: Clinical and Pathophysiological Impacts
- Review Articles
- Steroid hormones and the stroma-vascular cells of the adipose tissue
- Caveolae, lipid droplets, and adipose tissue biology: pathophysiological aspects
- Adipose tissue inflammation and metabolic dysfunction: a clinical perspective
- Pregnancy, obesity and insulin resistance: maternal overnutrition and the target windows of fetal development