Home Adipose tissue inflammation and metabolic dysfunction: a clinical perspective
Article
Licensed
Unlicensed Requires Authentication

Adipose tissue inflammation and metabolic dysfunction: a clinical perspective

  • Charmaine S. Tam and Leanne M. Redman EMAIL logo
Published/Copyright: August 12, 2013

Abstract

Obesity is characterized by a state of chronic low-grade inflammation due to increased immune cells, specifically infiltrated macrophages into adipose tissue, which in turn secrete a range of proinflammatory mediators. This nonselective low-grade inflammation of adipose tissue is systemic in nature and can impair insulin signaling pathways, thus, increasing the risk of developing insulin resistance and type 2 diabetes. The aim of this review is to provide an update on clinical studies examining the role of adipose tissue in the development of obesity-associated complications in humans. We will discuss adipose tissue inflammation during different scenarios of energy imbalance and metabolic dysfunction including obesity and overfeeding, weight loss by calorie restriction or bariatric surgery, and conditions of insulin resistance (diabetes, polycystic ovarian syndrome).


Corresponding author: Leanne M. Redman, PhD, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Rd, Baton Rouge, LA 70808, USA, Phone: 225-763-0947, Fax: 225-763-3030

CST is supported by NHMRC Early Career Fellowship (#1037275), and LMR is supported by R00HD060762 and U01HD094418.

References

1. Tchernof A, Despres JP. Pathophysiology of human visceral obesity: an update. Physiol Rev 2013;93:359–404.10.1152/physrev.00033.2011Search in Google Scholar PubMed

2. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol 2011;29:415–45.10.1146/annurev-immunol-031210-101322Search in Google Scholar PubMed

3. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 2011;11:98–107.10.1038/nri2925Search in Google Scholar PubMed

4. Strissel KJ, Stancheva Z, Miyoshi H, Perfield JW, DeFuria J, Jick Z, Greenberg AS, Obin MS. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 2007;56:2910–8.10.2337/db07-0767Search in Google Scholar PubMed

5. Fain JN. Release of inflammatory mediators by human adipose tissue is enhanced in obesity and primarily by the nonfat cells: a review. Mediators Inflamm 2010;2010:513948.10.1155/2010/513948Search in Google Scholar PubMed PubMed Central

6. Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, Rouault C, Coupaye M, Pelloux V, Hugol D, Bouillot JL, Bouloumie A, Barbatelli G, Cinti S, Svensson PA, Barsh GS, Zucker JD, Basdevant A, Langin D, Clement K. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 2005;54:2277–86.10.2337/diabetes.54.8.2277Search in Google Scholar PubMed

7. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, Wang S, Fortier M, Greenberg AS, Obin MS. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 2005;46:2347–55.10.1194/jlr.M500294-JLR200Search in Google Scholar PubMed

8. Harman-Boehm I, Bluher M, Redel H, Sion-Vardy N, Ovadia S, Avinoach E, Shai I, Kloting N, Stumvoll M, Bashan N, Rudich A. Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the co-morbidities of obesity. J Clin Endocrinol Metab 2007;92:2240–7.10.1210/jc.2006-1811Search in Google Scholar PubMed

9. Cancello R, Tordjman J, Poitou C, Guilhem G, Bouillot JL, Hugol D, Coussieu C, Basdevant A, Hen AB, Bedossa P, Guerre-Millo M, Clement K. Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes 2006;55:1554–61.10.2337/db06-0133Search in Google Scholar PubMed

10. Apovian CM, Bigornia S, Mott M, Meyers MR, Ulloor J, Gagua M, McDonnell M, Hess D, Joseph L, Gokce N. Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects. Arterioscler Thromb Vasc Biol 2008;28:1654–9.10.1161/ATVBAHA.108.170316Search in Google Scholar PubMed PubMed Central

11. Wentworth JM, Naselli G, Brown WA, Doyle L, Phipson B, Smyth GK, Wabitsch M, O’Brien PE, Harrison LC. Pro-inflammatory CD11c+CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes 2010;59:1648–56.10.2337/db09-0287Search in Google Scholar PubMed PubMed Central

12. Talukdar S, Oh dY, Bandyopadhyay G, Li D, Xu J, McNelis J, Lu M, Li P, Yan Q, Zhu Y, Ofrecio J, Lin M, Brenner MB, Olefsky JM. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med 2012;18:1407–12.10.1038/nm.2885Search in Google Scholar PubMed PubMed Central

13. DeFuria J, Belkina AC, Jagannathan-Bogdan M, Snyder-Cappione J, Carr JD, Nersesova YR, Markham D, Strissel KJ, Watkins AA, Zhu M, Allen J, Bouchard J, Toraldo G, Jasuja R, Obin MS, McDonnell ME, Apovian C, Denis GV, Nikolajczyk BS. B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile. Proc Natl Acad Sci USA 2013;110:5133–8.10.1073/pnas.1215840110Search in Google Scholar PubMed PubMed Central

14. Elgazar-Carmon V, Rudich A, Hadad N, Levy R. Neutrophils transiently infiltrate intra-abdominal fat early in the course of high-fat feeding. J Lipid Res 2008;49:1894–903.10.1194/jlr.M800132-JLR200Search in Google Scholar PubMed

15. Tam CS, Viardot A, Clement K, Tordjman J, Tonks K, Greenfield JR, Campbell LV, Samocha-Bonet D, Heilbronn LK. Short-term overfeeding may induce peripheral insulin resistance without altering subcutaneous adipose tissue macrophages in humans. Diabetes 2010;59:2164–70.10.2337/db10-0162Search in Google Scholar PubMed PubMed Central

16. Alligier M, Meugnier E, Debard C, Lambert-Porcheron S, Chanseaume E, Sothier M, Loizon E, Ait HA, Brozek J, Scoazec JY, Morio B, Vidal H, Laville M. Subcutaneous adipose tissue remodeling during the initial phase of weight gain induced by overfeeding in humans. J Clin Endocrinol Metab 2012;97:E183–92.10.1210/jc.2011-2314Search in Google Scholar PubMed

17. Barbosa-da-Silva S, Fraulob-Aquino JC, Lopes JR, Mandarim-de-Lacerda CA, Aguila MB. Weight cycling enhances adipose tissue inflammatory responses in male mice. PLoS One 2012;7:e39837.10.1371/journal.pone.0039837Search in Google Scholar PubMed PubMed Central

18. Anderson EK, Gutierrez DA, Kennedy A, Hasty AH. Weight cycling increases T cell accumulation in adipose tissue and impairs systemic glucose tolerance. Diabetes 2013, in press.10.2337/db12-1076Search in Google Scholar PubMed PubMed Central

19. Resi V, Basu S, Haghiac M, Presley L, Minium J, Kaufman B, Bernard S, Catalano P, Hauguel-de MS. Molecular inflammation and adipose tissue matrix remodeling precede physiological adaptations to pregnancy. Am J Physiol Endocrinol Metab 2012;303:E832–40.10.1152/ajpendo.00002.2012Search in Google Scholar PubMed PubMed Central

20. Basu S, Haghiac M, Surace P, Challier JC, Guerre-Millo M, Singh K, Waters T, Minium J, Presley L, Catalano PM, Hauguel-de MS. Pregravid obesity associates with increased maternal endotoxemia and metabolic inflammation. Obesity (Silver Spring) 2011;19:476–82.10.1038/oby.2010.215Search in Google Scholar PubMed PubMed Central

21. Friis CM, Paasche Roland MC, Godang K, Ueland T, Tanbo T, Bollerslev J, Henriksen T. Adiposity-related inflammation: effects of pregnancy. Obesity (Silver Spring) 2013;21:E124–30.10.1002/oby.20120Search in Google Scholar PubMed

22. Selvin E, Paynter NP, Erlinger TP. The effect of weight loss on C-reactive protein: a systematic review. Arch Intern Med 2007;167:31–9.10.1001/archinte.167.1.31Search in Google Scholar PubMed

23. Clement K, Viguerie N, Poitou C, Carette C, Pelloux V, Curat CA, Sicard A, Rome S, Benis A, Zucker JD, Vidal H, Laville M, Barsh GS, Basdevant A, Stich V, Cancello R, Langin D. Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. FASEB J 2004;18:1657–69.10.1096/fj.04-2204comSearch in Google Scholar PubMed

24. Dahlman I, Linder K, Arvidsson NE, Andersson I, Liden J, Verdich C, Sorensen TI, Arner P. Changes in adipose tissue gene expression with energy-restricted diets in obese women. Am J Clin Nutr 2005;81:1275–85.10.1093/ajcn/81.6.1275Search in Google Scholar PubMed

25. Viguerie N, Vidal H, Arner P, Holst C, Verdich C, Avizou S, Astrup A, Saris WH, Macdonald IA, Klimcakova E, Clement K, Martinez A, Hoffstedt J, Sorensen TI, Langin D. Adipose tissue gene expression in obese subjects during low-fat and high-fat hypocaloric diets. Diabetologia 2005;48:123–31.10.1007/s00125-004-1618-xSearch in Google Scholar PubMed

26. Tam CS, Covington JD, Ravussin E, Redman LM. Little evidence of systemic and adipose tissue inflammation in overweight individuals(dagger). Front Genet 2012;3:58.Search in Google Scholar

27. Bruun JM, Helge JW, Richelsen B, Stallknecht B. Diet and exercise reduce low-grade inflammation and macrophage infiltration in adipose tissue but not in skeletal muscle in severely obese subjects. Am J Physiol Endocrinol Metab 2006;290:E961–7.10.1152/ajpendo.00506.2005Search in Google Scholar PubMed

28. Aron-Wisnewsky J, Tordjman J, Poitou C, Darakhshan F, Hugol D, Basdevant A, Aissat A, Guerre-Millo M, Clement K. Human adipose tissue macrophages: M1 and M2 cell surface markers in subcutaneous and omental depots and after weight loss. J Clin Endocrinol Metab 2009;94:4619–23.10.1210/jc.2009-0925Search in Google Scholar PubMed

29. Lee BC, Lee J. Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochim Biophys Acta 2013, in press.Search in Google Scholar

30. Ortega Md, V, Xu X, Koska J, Francisco AM, Scalise M, Ferrante AW, Jr., Krakoff J. Macrophage content in subcutaneous adipose tissue: associations with adiposity, age, inflammatory markers, and whole-body insulin action in healthy Pima Indians. Diabetes 2009;58:385–93.10.2337/db08-0536Search in Google Scholar PubMed PubMed Central

31. Le KA, Mahurkar S, Alderete TL, Hasson RE, Adam TC, Kim JS, Beale E, Xie C, Greenberg AS, Allayee H, Goran MI. Subcutaneous adipose tissue macrophage infiltration is associated with hepatic and visceral fat deposition, hyperinsulinemia, and stimulation of NF-kappaB stress pathway. Diabetes 2011;60:2802–9.10.2337/db10-1263Search in Google Scholar PubMed PubMed Central

32. Di Gregorio GB, Yao-Borengasser A, Rasouli N, Varma V, Lu T, Miles LM, Ranganathan G, Peterson CA, McGehee RE, Kern PA. Expression of CD68 and macrophage chemoattractant protein-1 genes in human adipose and muscle tissues: association with cytokine expression, insulin resistance, and reduction by pioglitazone. Diabetes 2005;54:2305–13.10.2337/diabetes.54.8.2305Search in Google Scholar PubMed

33. Koppaka S, Kehlenbrink S, Carey M, Li W, Sanchez E, Lee DE, Lee H, Chen J, Carrasco E, Kishore P, Zhang K, Hawkins M. Reduced adipose tissue macrophage content is associated with improved insulin sensitivity in thiazolidinedione-treated diabetic humans. Diabetes 2013;62:1843–54.10.2337/db12-0868Search in Google Scholar PubMed PubMed Central

34. Ghanim H, Dhindsa S, Aljada A, Chaudhuri A, Viswanathan P, Dandona P. Low-dose rosiglitazone exerts an antiinflammatory effect with an increase in adiponectin independently of free fatty acid fall and insulin sensitization in obese type 2 diabetics. J Clin Endocrinol Metab 2006;91:3553–8.10.1210/jc.2005-2609Search in Google Scholar PubMed

35. Ebejer K, Calleja-Agius J. The role of cytokines in polycystic ovarian syndrome. Gynecol Endocrinol 2013;29:536–40.10.3109/09513590.2012.760195Search in Google Scholar PubMed

36. Ojeda-Ojeda M, Murri M, Insenser M, Escobar-Morreale HF. Mediators of low-grade chronic inflammation in polycystic ovary syndrome (PCOS). Curr Pharm Des 2013, in press.10.2174/1381612811319320012Search in Google Scholar PubMed

37. Escobar-Morreale HF, Luque-Ramirez M, Gonzalez F. Circulating inflammatory markers in polycystic ovary syndrome: a systematic review and metaanalysis. Fertil Steril 2011;95:1048–58.10.1016/j.fertnstert.2010.11.036Search in Google Scholar PubMed PubMed Central

38. Kelly CC, Lyall H, Petrie JR, Gould GW, Connell JM, Sattar N. Low grade chronic inflammation in women with polycystic ovarian syndrome. J Clin Endocrinol Metab 2001;86:2453–5.10.1210/jcem.86.6.7580Search in Google Scholar PubMed

39. Amato G, Conte M, Mazziotti G, Lalli E, Vitolo G, Tucker AT, Bellastella A, Carella C, Izzo A. Serum and follicular fluid cytokines in polycystic ovary syndrome during stimulated cycles. Obstet Gynecol 2003;101:1177–82.Search in Google Scholar

40. Hu W, Qiao J, Yang Y, Wang L, Li R. Elevated C-reactive protein and monocyte chemoattractant protein-1 in patients with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol 2011;157:53–6.10.1016/j.ejogrb.2011.03.015Search in Google Scholar PubMed

41. Yang Y, Qiao J, Li R, Li MZ. Is interleukin-18 associated with polycystic ovary syndrome? Reprod Biol Endocrinol 2011;9:7.10.1186/1477-7827-9-7Search in Google Scholar PubMed PubMed Central

42. Xiong YL, Liang XY, Yang X, Li Y, Wei LN. Low-grade chronic inflammation in the peripheral blood and ovaries of women with polycystic ovarian syndrome. Eur J Obstet Gynecol Reprod Biol 2011;159:148–50.10.1016/j.ejogrb.2011.07.012Search in Google Scholar PubMed

Received: 2013-6-28
Accepted: 2013-7-17
Published Online: 2013-08-12
Published in Print: 2013-09-01

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 13.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hmbci-2013-0032/html
Scroll to top button