Axial variation in the cambium anatomy of Schizolobium parahyba var. amazonicum
-
Luiz Eduardo de L. Melo
, Thaís J. de Vasconcellos
Abstract
Schizolobium parahyba var. amazonicum (paricá) is a promising forest species that has been planted in some states of the Amazon region in Brazil, to meet the demand of the plywood panel industry. The present work involves a study of the variations of the cambium and their impact on derivative tissues at different heights in the stem of S. parahyba var. amazonicum. Except for the tangential diameter of the fusiform initials (DFI) and the width of the xylem cell layer in differentiation (WXD), there was significant statistical variation between the evaluated axial positions for all anatomical parameters of the cambium. A strong positive correlation was noticed between the length of the fusiform initials (LFI) with ray height (RH) [r = 0.79, degree of freedom (DF) = 7, P < 0.05], vessel element length (VL) (r = 0.78, DF = 7, P < 0.05) and fiber length (FL) (r = 0.74, DF = 7, P < 0.05). The results of this study give quantitative support that the LFI is an important prognosis, not only for the VL and FL, but also for the rays, in hardwood species.
Acknowledgments
This research counted on the support of Arboris Group. The first author would also like to thank DSc. Iedo Souza, from the Pará State University, for all the professional help during the stages of this research. A special “thank you” to all the staff of the Laboratory of Plant Anatomy of the Rio de Janeiro State University for technical support and friendship. The authors are grateful to an anonymous reviewer for comments and suggestions that substantially improved the quality of this paper.
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: The authors are grateful to CAPES for the grants and financial support provided during this work.
Employment or leadership: None declared.
Honorarium: None declared.
References
Ajmal, S., Iqbal, M. (1992) Structure of the vascular cambium of varying age and its derivative tissues in the stem of Ficus rumphii Blume. Bot. J. Linn. Soc. 109:211–222.10.1111/j.1095-8339.1992.tb00267.xSearch in Google Scholar
Aref, I.M., Khan, P.R., Al-Mefarrej, H., Al-Shahrani, T., Ismail, A., Iqbal, M. (2014) Cambial periodicity and wood production in Acacia ehrenbergiana Hayne growing on dry sites of Saudi Arabia. J. Environ. Biol. 35:301–310.Search in Google Scholar
Bailey, I.W. (1920) The cambium and its derivative tissues II. Size variations of cambial initials in gymnosperms and angiosperms. Amer. J. Bot. 7:355–367.10.1002/j.1537-2197.1920.tb05590.xSearch in Google Scholar
Bailey, I.W. (1923) The cambium and its derivative tissues. IV. The increase in girth of the cambium. Am. J. Bot. 10:499–509.10.1002/j.1537-2197.1923.tb05747.xSearch in Google Scholar
Barneby, R.C. (1996) Neotropical Fabales at NY: asides and oversights. Brittonia 48:174–187.10.2307/2807811Search in Google Scholar
Barros, C.F., Miguens, F.C. (1998) Ultrastructure of the epidermal cells of Beilschmiedia rigida (Mez) Kosterm. (Lauraceae). Acta Microsc. 6:451–461.Search in Google Scholar
Butterfield, B.G. (1973) Variation in the size of fusiform cambial initials and vessel members in Hoheria angustifolia Raoul. N. Z. J. Bot. 11:391–410.10.1080/0028825X.1973.10430290Search in Google Scholar
Callado, C.H., Roig, F.A., Tomazello-Filho, M., Barros, C.F. (2013) Cambial growth periodicity studies of South American woody species – a review. IAWA J. 34:213–230.10.1163/22941932-00000019Search in Google Scholar
Callado, C.H., De Vasconcellos, T.J., Costa, M.S., Barros, C.F., Roig, F.A., Tomazello-Filho, M. (2014) Studies on cambial activity: advances and challenges in the knowledge of growth dynamics of Brazilian woody species. An. Acad. Bras. Cienc. 86:277–283.10.1590/0001-3765201320130033Search in Google Scholar PubMed
Cardoso, D., Särkinen, T., Alexander, S., Amorim, A.M., Bittrich, V., Celis, M., Daly, D.C., Fiaschi, P., Funk, V.A., Giacomin, L.L., Goldenberg, R., Heiden, G., Iganci, J., Kelloff, C.L., Knapp, S., de Lima, H.C., Machado, A.F.P., dos Santos, R.M., Mello-Silva, R., Michelangeli, F.A., Mitchell, J., Moonlight, P., de Moraes, P.L.R., Mori, S.A., Nunes, T.S., Pennington, T.D., Pirani, J.R., Prance, G.T., de Queiroz, L.P., Ricarda, A.R, Rincon, C.A.V., Roque, N., Shimizu, G., Sobral, M., Stehmann, J.R., Stevens, W.D., Taylor, C.M., Trovó, M., van den Berg, C., van der Werff, H., Viana, P.L., Zartman, C.E., Forzza, R.C. (2017) Amazon plant diversity revealed by a taxonomically verified species list. Proc. Natl. Acad. Sci. U.S.A. 114:10695–10700.10.1073/pnas.1706756114Search in Google Scholar PubMed PubMed Central
Carvalho, J.G., Viegas, I.J.M. (2004) Características de sintomas de deficiência de nutrientes em paricá (Schizolobium parahyba var. amazonicum (Huber ex Ducke) Barneby. EMBRAPA-CPATU, Circular Técnico 7, Belém.Search in Google Scholar
Chaffey, N., Cholewa, E., Regan, S., Sundberg, Björn. (2002) Secondary xylem development in Arabidopsis: a model for wood formation. Physiol. Plantarum 114:594–600.10.1034/j.1399-3054.2002.1140413.xSearch in Google Scholar PubMed
Crawley, M.J. The R Book. John Wiley & Sons, Chichester, 2013.Search in Google Scholar
Da Cunha, M., Gomes, V.M., Xavier-Filho, J., Attias, M., Souza, W., Miguens, F.C. (2000) Laticifer system of Chamaesyce thymifolia: a closed host environment for Trypanosomatids. Biocell 24:123–132.Search in Google Scholar
De Vasconcellos, T.J., Da Cunha, M., Callado, C.H. (2016) A comparative study of cambium histology of Ceiba speciosa (A. St.-Hil.) Ravenna (Malvaceae) under urban pollution. Environ. Sci. Pollut. Res. 23:1–14.10.1007/s11356-015-6012-3Search in Google Scholar PubMed
Deslauriers, A., Giovannelli, A., Rossi, S., Castro, G., Fragnelli, G., Traversi, L. (2009) Intra-annual cambial activity and carbon availability in stem of poplar. Tree Physiol. 29:1223–1235.10.1093/treephys/tpp061Search in Google Scholar PubMed
Die, A., Kitin, P., Kouame, F.N., Van den Bulcke, J., Van Acker, J., Beeckman, H. (2012) Fluctuations of cambial activity in relation to precipitation result in annual rings and intra-annual growth zones of xylem and phloem in teak (Tectona grandis) in Ivory Coast. Ann. Bot. 110:861–873.10.1093/aob/mcs145Search in Google Scholar PubMed PubMed Central
EMBRAPA Centro Nacional de Pesquisa de Solos. Sistema Brasileiro de Classificação de Solos. Embrapa Solos, Rio de Janeiro, 2006.Search in Google Scholar
Falesi, I.C., Galeão, R.R. Recuperação de áreas antropizadas da mesorregião nordeste paraense através de sistemas agroflorestais. Empresa de Assistência Técnica e Extensão Rural do Estado do Pará. (EMATER), Belém, 2002.Search in Google Scholar
Feder, N., O’Brien, T.P. (1968) Plant microtechnique: some principles and new methods. Am. J. Bot. 55:123–142.10.1002/j.1537-2197.1968.tb06952.xSearch in Google Scholar
Franklin, G.L. (1945) Preparation of thin sections of synthetic resin and wood: resin composites, and a new macerating method for wood. Nature 155:5.10.1038/155051a0Search in Google Scholar
Ghouse, A.K.M., Hashmi, S. (1981) Developmental-changes in the vascular cambium of Delonix regia Rafin. Proc. Ind. Acad. Sci. B 90:143–151.10.1007/BF03167737Search in Google Scholar
IAWA Committee International Association of Wood Anatomists. (1989) IAWA list of microscopic features for hardwood dentificação. Iawa Bull. n.s. 10:219–332.10.1163/22941932-90000495Search in Google Scholar
IBÁ Indústria Brasileira de Árvores. (2017) Relatório anual 2016. http://iba.org. Accessed 01 December 2016.Search in Google Scholar
IBGE Instituto Brasileiro de Geografia e Estatística. (2004) Mapa de Vegetação do Brasil. http://www.mma.gov.br. Accessed 01 December 2016.Search in Google Scholar
Iqbal, M., Ghouse, A.K.M. (1987) Anatomy of the vascular cambium of Acacia nilotica (L.) Del. var. telia Troup (Mimosaceae) in relation to age and season in relation to age and season. Bot. J. Linn. Soc. 94:385–397.10.1111/j.1095-8339.1986.tb01055.xSearch in Google Scholar
Johansen, D.A. Plant Microtechnique. McGraw-Hill, New York, 1940.Search in Google Scholar
Khan, M.A., Badruzzaman Siddiqui, M. (2007) Size variation in the vascular cambium and its derivatives in two Alstonia species. Acta Bot. Bras. 21:531–538.10.1590/S0102-33062007000300003Search in Google Scholar
Kitin, P., Funada, R., Sano, Y., Beeckman, H., Ohtani, J. (1999) Variations in the lengths of fusiform cambial cells and vessel elements in Kalopanax pictus. Ann. Bot. 84:621–632.10.1006/anbo.1999.0957Search in Google Scholar
Larson, P.R. The Vascular Cambium: Development and Structure. Springer Verlag, Berlin, 1994.10.1007/978-3-642-78466-8Search in Google Scholar
Lev-Yadun, S., Aloni, R. (1991) Polycentric vascular rays in Suaeda monoica and the control of ray initiation and spacing. Trees 5:22–29.10.1007/BF00225331Search in Google Scholar
Lev-Yadun, S., Aloni, R. (1992) The role of wounding in the differentiation of vascular rays. Int. J. Plant Sci. 153:348–357.10.1086/297039Search in Google Scholar
Lev-Yadun, S., Aloni, R. (1995) Differentiation of the ray system in woody-plants. Bot. Rev. 61:45–84.10.1007/BF02897151Search in Google Scholar
Lewis, G.P. (2015) Schizolobium in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB23144. Accessed 01 December 2016.Search in Google Scholar
Marcati, C.R., Milanez, C.R.D., Machado, S.R. (2008) Seasonal development of secondary xylem and phloem in Schizolobium parahyba (Vell.) Blake (Leguminosae: Caesalpinioideae). Trees 22:3–12.10.1007/s00468-007-0173-8Search in Google Scholar
Marcati, C.R., Machado, S.R., Podadera, D.S., Lara, N.O.T., Bosio, F., Wiedenhoeft, A.C. (2016) Cambial activity in dry and rainy season on branches from woody species growing in Brazilian Cerrado. Flora 223:1–10.10.1016/j.flora.2016.04.008Search in Google Scholar
Marques, L.C.T., Yared, J.A.G., Siviero, M.A. (2006) A Evolução do Conhecimento sobre o Paricá para Reflorestamento no Estado do Pará. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA).Search in Google Scholar
Monteiro, D.C.A. (2013) Condições Topoclimáticas preferenciais para plantios de Paricá (Schizolobium parahyba var. amazonicum (Huber ex. Ducke Barneby) e evidências de desempenho para otimizar a silvicultura em áreas desflorestadas na Amazônia. Dissertação (Mestrado em Ciências/Ecologia Aplicada) – Escola Superior de Agricultura “Luiz de Queiroz”/Cena, 153 f, Piracicaba.10.11606/D.91.2013.tde-22112013-141647Search in Google Scholar
Morel, H., Mangenet, T., Beauchêne, J., Ruelle, J., Nicolini, E., Heuret, P., Thibaut, B. (2015) Seasonal variations in phenological traits: leaf shedding and cambial activity in Parkia nitida Miq. and Parkia velutina Benoist (Fabaceae) in tropical rainforest. Trees 29:973–984.10.1007/s00468-015-1177-4Search in Google Scholar
Murakami, Y., Funada, R., Sano, Y., Ohtani, J. (1999) The differentiation of contact cells and isolation cells in the xylem ray parenchyma of Populus maximowiczii. Ann. Bot. 84:429–435.10.1006/anbo.1999.0931Search in Google Scholar
Myskow, E., Zagórska-Marek, B. (2004) Ontogenetic development of storied ray pattern in cambium of Hippophae rhamnoides L. Acta Soc. Bot. Pol. 73:93–101.10.5586/asbp.2004.014Search in Google Scholar
O’Brien, T.P., Feder, M., McCully, M.E. (1964) Polyehromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:367–373.10.1007/BF01248568Search in Google Scholar
Patel, V.R., Pramod, S., Rao, K.S. (2014) Cambial activity, annual rhythm of xylem production in relation to phenology and climatic factors and lignification pattern during xylogenesis in drum-stick tree (Moringa oleifera). Flora 209:556–566.10.1016/j.flora.2014.08.002Search in Google Scholar
Philipson, W.R., Ward, J.M., Butterfield, B.G. The Vascular Cambium: Its Development and Activity. Chapman & Hall, London, 1971.Search in Google Scholar
Pismel, V.A.M., Martorano, L.G., Monteiro, D.C.A., Lisboa, L.S. (2016) Produto modis associado à condição hídrica no solo para diferenciar padrões na vegetação no município de Dom Eliseu, Pará. Rev. Bras. Climatologia 19:178–190.Search in Google Scholar
Pramod, S., Patel, P.B., Rao, K.S. (2013) Influence of exogenous ethylene on cambial activity, xylogenesis and ray initiation in young shoots of Leucaena leucocephala (lam.) de Wit. Flora 208:549–555.10.1016/j.flora.2013.09.001Search in Google Scholar
Pumijumnong, N., Buajan, S. (2013) Seasonal cambial activity of five tropical tree species in central Thailand. Trees 27:409–417.10.1007/s00468-012-0794-4Search in Google Scholar
R Development Core Team. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, 2013. http://www.R-project.org. Accessed 01 December 2015.Search in Google Scholar
Ramos, A.C., Regan, S. (2018) Cell differentiation in the vascular cambium: new tool, 120-year debate. J. Exp. Bot. 69: 4231–4233.10.1093/jxb/ery285Search in Google Scholar
Rao, K.S. (1988) Cambial activity and developmental changes in ray initials of some tropical trees. Flora 181:425–434.10.1016/S0367-2530(17)30384-5Search in Google Scholar
Rathgeber, C.K., Cuny, H.E., Fonti, P. (2016) Biological basis of tree-ring formation: a crash course. Front. Plant Sci. 7:734.10.3389/fpls.2016.00734Search in Google Scholar PubMed PubMed Central
Ridoutt, B.G., Sands, R. (1993) Within-tree variation in cambial anatomy and xylem cell-differentiation in Eucalyptus globulus. Trees-Struct. Funct. 8:8–22.10.1007/BF00240977Search in Google Scholar
Ridoutt, B.G., Sands, R. (1994) Quantification of the processes of secondary xylem fiber development in Eucalyptus globulus at 2 height levels. IAWA J. 15:417–424.10.1163/22941932-90001377Search in Google Scholar
Santos, J., Neto, F.P., Higuchi, H., Leite, H.G., Souza, A.L., Vale, A.B. (2001) Modelo estatísticos para estimar a fitomassa acima do solo da floresta tropical úmida da Amazônia Central. Rev. Arvore 25:445–454.Search in Google Scholar
Schwartz, G., Pereira, P.C.G., Siviero, M.A., Pereira, J.F., Ruschel, A.R, Yared, A.G. (2017) Enrichment planting in logging gaps with Schizolobium parahyba var. amazonicum (Huber ex Ducke) Barneby: a financially profitable alternative for degraded tropical forests in the Amazon. For. Ecol. Manag. 278:101–109.10.1016/j.foreco.2017.01.031Search in Google Scholar
Srivastava, L.M. (1963) Cambium and vascular derivatives of Ginkgo biloba. J. Arnold Arbor. 44:165–192.10.5962/p.185663Search in Google Scholar
SUDAM-DRN/EMBRAPA-SNLCS. (1993) Estudos climáticos do estado do Pará, classificação (Köppen) e deficiência hídrica (Thorntwaite, Mather). Superintendência de Desenvolvimento da Amazônia, Belém.Search in Google Scholar
Veloso, H.P., Rangel-Filho, A.L.R., Lima, J.C.A. Classificação da vegetação brasileira adaptada a um sistema universal. IBGE, Rio de Janeiro, 1991.Search in Google Scholar
Whetten, R., Sederoff, R. (1991) Genetic-engineering of wood. For. Ecol. Manag. 43:301–316.10.1016/0378-1127(91)90133-GSearch in Google Scholar
Wilczek, A., Jura-Morawiec, J., Kojs, P., Iqbal, M., Wloch, W. (2011) Correlation of intrusive growth of cambial initials to rearrangement of rays in the vascular cambium. IAWA J. 32:313–331.10.1163/22941932-90000060Search in Google Scholar
©2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original articles
- Axial variation in the cambium anatomy of Schizolobium parahyba var. amazonicum
- Effect of growth stress and interlocked grain on splitting of seven different hybrid clones of Eucalyptus grandis×Eucalyptus urophylla wood
- Dynamic parallel-to-grain compressive properties of three softwoods under seismic strain rates: tests and constitutive modeling
- European beech log and lumber grading in wet and dry conditions using longitudinal vibration
- Influence of chemical pretreatments on plant fiber cell wall and their implications on the appearance of fiber dislocations
- Enhancing the thermal stability, water repellency, and flame retardancy of wood treated with succinic anhydride and melamine-urea-formaldehyde resins
- Improvement of interfacial interaction in impregnated wood via grafting methyl methacrylate onto wood cell walls
- A study on the GA-BP neural network model for surface roughness of basswood-veneered medium-density fiberboard
- Characterisation and valorisation of the bark of Myrcia eximia DC. trees from the Amazon rainforest as a source of phenolic compounds
Articles in the same Issue
- Frontmatter
- Original articles
- Axial variation in the cambium anatomy of Schizolobium parahyba var. amazonicum
- Effect of growth stress and interlocked grain on splitting of seven different hybrid clones of Eucalyptus grandis×Eucalyptus urophylla wood
- Dynamic parallel-to-grain compressive properties of three softwoods under seismic strain rates: tests and constitutive modeling
- European beech log and lumber grading in wet and dry conditions using longitudinal vibration
- Influence of chemical pretreatments on plant fiber cell wall and their implications on the appearance of fiber dislocations
- Enhancing the thermal stability, water repellency, and flame retardancy of wood treated with succinic anhydride and melamine-urea-formaldehyde resins
- Improvement of interfacial interaction in impregnated wood via grafting methyl methacrylate onto wood cell walls
- A study on the GA-BP neural network model for surface roughness of basswood-veneered medium-density fiberboard
- Characterisation and valorisation of the bark of Myrcia eximia DC. trees from the Amazon rainforest as a source of phenolic compounds