Fine-fibrous cellulose II aerogels of high specific surface from pulp solutions in TBAF·H2O/DMSO
-
Christian B. Schimper
Abstract
Lightweight cellulose II aerogels featuring densities of about 40–70 mg cm−3 were prepared from 1 to 3% solutions of different pulps in hot (60°C) tetra-n-butylammonium fluoride (TBAF)·H2O/dimethyl sulfoxide (DMSO) by (i) the coagulation of cellulose with EtOH to afford self-standing, transparent and homogeneous gels, (ii) gel ripening and washing, (iii) solvent exchange and (iv) supercritical carbon dioxide (scCO2) drying. Size exclusion chromatography (SEC) analyses confirmed that the chemical integrity of cellulose is largely preserved at short dissolution times. Dissolution of more than 2% of cellulose at a sufficiently low viscosity for solution, casting was achieved after the water content of TBAF was reduced to a value equaling that of the monohydrate. Intriguingly, the obtained aerogels featured higher specific surfaces (≤470 m2 g−1) than comparable materials prepared from other cellulose solvents. This is due to the particular morphology of TBAF aerogels, which is supposedly formed by spinodal decomposition of the cellulose/solvent mixture upon exposure to the cellulose antisolvent. As a result, largely homogeneous three-dimensional (3D) networks of agglomerated cellulose spheres were formed, which simultaneously acted as supporting scaffolds for interconnected micron-size voids. As cellulose spheres are composed of very small interwoven nanofibers, TBAF-derived aerogels contain a high portion of micropores and small amounts of mesopores, too.
Acknowledgments
The authors would like to thank Sonja Schiehser (Department of Chemistry) for performing gel permeation chromatography, Walter Klug and Harald Rennhofer (Institute of Physics and Materials Science) for SEM and SAXS measurements, respectively, as well as Ernst Thür and Johannes Amberger for their laboratory assistance (all University of Natural Resources and Life Sciences Vienna, Austria). Furthermore, Adeline Hardy-Dessources (École Nationale Supérieur de Chimie de Clermont-Ferrand, France) is thankfully acknowledged for performing thermoporosimetry and Stefan Willför (Abo Academy Finland) for providing the COST E41 TMP sample.
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: The financial support by the University of Natural Resources and Life Sciences, Vienna, through the BOKU DOC Grant 2008 (Funder Id: 10.13039/501100006380) to C.B. Schimper is gratefully acknowledged.
Employment or leadership: None declared.
Honorarium: None declared.
References
Ass, B.A.P., Frollini, E., Heinze, T. (2004) Studies on the homogeneous acetylation of cellulose in the novel solvent dimethyl sulfoxide/tetrabutylammonium fluoride trihydrate. Macromol. Biosci. 4:1008–1013.10.1002/mabi.200400088Search in Google Scholar
Bohrn, R., Potthast, A., Schiehser, S., Rosenau, T., Sixta, H., Kosma, P. (2006) A novel method for the determination of carboxyl profiles in cellulosics by fluorescence labeling. Part I: method development. Biomacromol. 7:1743–1750.10.1021/bm060039hSearch in Google Scholar
Brun, M., Lallemand, A., Quinson, J.-F., Eyraud, C. (1977) The thermoporimetry. Thermochim. Acta 21:59–88.10.1016/0040-6031(77)85122-8Search in Google Scholar
Cai, J., Liu, Y., Zhang, L. (2006) Dilute solution properties of cellulose in LiOH/urea aqueous system. J. Polym. Sci. Pol. Phys. 44:3093–3101.10.1002/polb.20938Search in Google Scholar
Cai, J., Zhang, L., Zhou, J., Qi, H., Chen, H., Kondo, T., Chen, X., Chu, B. (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv. Mater. 19:821–825.10.1002/adma.200601521Search in Google Scholar
Cai, J., Kimura, S., Wada, M., Kuga, S., Zhang, L. (2008) Cellulose aerogels from aqueous alkali hydroxide-urea solution. ChemSusChem 1:149–154.10.1002/cssc.200700039Search in Google Scholar PubMed
De France, K.J., Hoare, T., Cranston, E.D. (2017) Review of hydrogels and aerogels containing nanocellulose. Chem. Mater. 29:4609–4631.10.1021/acs.chemmater.7b00531Search in Google Scholar
Duchemin, B.J.C., Staiger, M.P., Tucker, N., Newman, R.H. (2010) Aerocellulose based on all-cellulose composites. J. Appl. Polym. Sci. 115:216–221.10.1002/app.31111Search in Google Scholar
Evans, R., Wearne, R., Wallis, A. (1991) Pyridine-catalyzed depolymerization of cellulose during carbanilation with phenylisocyanate in dimethylsulfoxide. J. Appl. Polym. Sci. 42:813–820.10.1002/app.1991.070420327Search in Google Scholar
Gavillon, R., Budtova, T. (2007) Kinetics of cellulose regeneration from cellulose-NaOH-water gels and comparison with cellulose-N-methylmorpholine-N-oxide-water solutions. Biomacromolecules 8:424–432.10.1021/bm060376qSearch in Google Scholar PubMed
Gavillon, R., Budtova, T. (2008) Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions. Biomacromolecules 9:269–277.10.1021/bm700972kSearch in Google Scholar
Gindl, W., Keckes, J. (2005) All-cellulose nanocomposite. Polymer 46:10221–10225.10.1016/j.polymer.2005.08.040Search in Google Scholar
Grünke, S. (2001) Main and side reactions in the Karl Fischer solution. Food Control 12:419–426.10.1016/S0956-7135(01)00048-2Search in Google Scholar
Hauru, L., Hummel, M., Nieminen, K., Michud, A., Sixta, H. (2016) Cellulose regeneration and spinnability from ionic liquids. Soft Matter 12:1487.10.1039/C5SM02618KSearch in Google Scholar
Heinze, T., Koehler, S. (2010) Dimethyl sulfoxide and ammonium fluorides – novel cellulose solvents. ACS Symp. Ser. 1033:103–118.10.1021/bk-2010-1033.ch005Search in Google Scholar
Heinze, T., Dicke, R., Koschella, A., Kull, A.H., Klohr, E.-A., Koch, W. (2000) Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol. Chem. Phys. 201:627–631.10.1002/(SICI)1521-3935(20000301)201:6<627::AID-MACP627>3.0.CO;2-YSearch in Google Scholar
Hoepfner, S., Ratke, L., Milow, B. (2008) Synthesis and characterisation of nanofibrillar cellulose aerogels. Cellulose 15:121–129.10.1007/s10570-007-9146-8Search in Google Scholar
Hussain, M.A., Liebert, T., Heinze, T. (2004) Acylation of cellulose with N,N′-carbonyldiimidazole-activated acids in the novel solvent dimethyl sulfoxide/tetrabutylammonium fluoride. Macromol. Rapid Commun. 25:916–920.10.1002/marc.200300308Search in Google Scholar
Innerlohinger, J., Weber, H.K., Kraft, G. (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol. Symp. 244:126–135.10.1002/masy.200651212Search in Google Scholar
Jeong, Y., Friggeri, A., Akiba, I., Masunaga, H., Sakurai, K., Sakurai, S., Okamoto, S., Inoue, K., Shinkai, S. (2005) Small-angle X-ray scattering from a dual-component organogel to exhibit a charge transfer interaction. J. Colloid Interface Sci. 283:113–122.10.1016/j.jcis.2004.08.179Search in Google Scholar
Jiang, G., Yuan, Y., Wang, B., Yin, X., Mukuze, K.S., Huang, W., Zhang, Y., Wang, H. (2012) Analysis of regenerated cellulose fibers with ionic liquids as a solvent as spinning speed is increased. Cellulose 19:1075–1083.10.1007/s10570-012-9716-2Search in Google Scholar
Köhler, S. Ionische Flüssigkeiten als neue Reaktion medien für die Veretherung von Cellulose. In: Chemisch-Geowissenschaftliche Fakultät, Freidrich-Schiller-University, Jena. 2010, p. 133.Search in Google Scholar
Köhler, S., Heinze, T. (2007) New solvents for cellulose: dimethyl sulfoxide/ammonium fluorides. Macromol. Biosci. 7:307–314.10.1002/mabi.200600197Search in Google Scholar PubMed
Lavoine, N., Bergström, L. (2017) Nanocellulose-based foams and aerogels: processing, properties, and applications. J. Mater. Chem. A 5:16105–16117.10.1039/C7TA02807ESearch in Google Scholar
Liebner, F., Haimer, E., Potthast, A., Loidl, D., Tschegg, S., Neouze, M.-A., Wendland, M., Rosenau, T. (2009) Cellulosic aerogels as ultra-lightweight materials. Part 2: synthesis and properties. Holzforschung 63:3–11.10.1515/HF.2009.002Search in Google Scholar
Liebner, F., Pircher, N., Schimper, C., Haimer, E., Rosenau, T. (2015) Cellulose-based aerogels. In: Encyclopedia of Biomedical Polymers and Polymeric Biomaterials. Ed. Mishra, M. CRC Press, Taylor & Francis Group, New York, USA.Search in Google Scholar
Liu, R.-G., Shen, Y.-Y., Shao, H.-L., Wu, C.-X., Hu, X.-C. (2001) An analysis of lyocell fiber formation as a melt-spinning process. Cellulose 8:13–21.10.1023/A:1016785410218Search in Google Scholar
Long, Y.-L., Weng, Y.-X., Wang, Y.-Z. (2018) Cellulose aerogels: synthesis, applications and prospects. Polymers 10:28.10.3390/polym10060623Search in Google Scholar PubMed PubMed Central
Nedelec, J.-M., Grolier, J.-P., Baba, M. (2006) Thermoporosimetry: a powerful tool to study the cross-linking in gels networks. J. Sol-Gel Sci. Technol. 40:191–200.10.1007/s10971-006-9115-ySearch in Google Scholar
Nicholson, M. (1976) Reactions of cellulose in the dimethyl sulfoxide/paraformaldehyde (DMSO/PF) solvent. The Institute of Paper Chemistry, Appleton, WI.Search in Google Scholar
Pircher, N., Veigel, S., Aigner, N., Nedelec, J.M., Rosenau, T., Liebner, F. (2014) Reinforcement of bacterial cellulose aerogels with biocompatible polymers. Carbohydr. Polym. 111:505–513.10.1016/j.carbpol.2014.04.029Search in Google Scholar PubMed PubMed Central
Pircher, N., Carbajal, L., Schimper, C., Bacher, M., Rennhofer, H., Nedelec, J.-M., Lichtenegger, H.C., Rosenau, T., Liebner, F. (2016) Impact of selected solvent systems on the pore and solid structure of cellulose aerogels. Cellulose 23:1949–1966.10.1007/s10570-016-0896-zSearch in Google Scholar PubMed PubMed Central
Plappert, S.F., Nedelec, J.-M., Rennhofer, H., Lichtenegger, H.C., Liebner, F.W. (2017) Strain hardening and pore size harmonization by uniaxial densification: a facile approach toward superinsulating aerogels from nematic nanofibrillated 2,3-dicarboxyl cellulose. Chem. Mat. 29:6630–6641.10.1021/acs.chemmater.7b00787Search in Google Scholar
Plappert, S.F., Quraishi, S., Nedelec, J.-M., Konnerth, J., Rennhofer, H., Lichtenegger, H.C., Liebner, F.W. (2018) Conformal ultrathin coating by scCO2-mediated PMMA deposition: a facile approach to add moisture resistance to lightweight ordered nanocellulose aerogels. Chem. Mat. 30:2322–2330.10.1021/acs.chemmater.7b05226Search in Google Scholar
Potthast, A., Röhrling, J., Rosenau, T., Borgards, A., Sixta, H., Kosma, P. (2003) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 3. Monitoring oxidative processes. Biomacromolecules 4:743–749.10.1021/bm025759cSearch in Google Scholar
Potthast, A., Rosenau, T., Kosma, P. Analysis of oxidized functionalities in cellulose. In: Polysaccharides II. Ed. Klemm, D. Springer, Berlin/Heidelberg, 2006, pp. 1–48.10.1007/12_099Search in Google Scholar
Remsing, R.C., Swatloski, R.P., Rogers, R.D., Moyna, G. (2006) Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems. ChemComm. 12:1271–1273.10.1039/b600586cSearch in Google Scholar
Rhee, B., Yim, H.B. (1975) Optimierung des kontinuierlichen thermischen Abbaus zur Graphitierung von Endlos-Zellulose (Transl.). Hwahak Konghak. 13:261–268.Search in Google Scholar
Rinaldi, R. (2011) Instantaneous dissolution of cellulose in organic electrolyte solutions. ChemComm. 47:511.10.1039/C0CC02421JSearch in Google Scholar
Rohleder, E., Heinze, T. (2010) Comparison of benzyl celluloses synthesized in aqueous NaOH and dimethyl sulfoxide/tetrabutylammonium fluoride. Macromol. Symp. 294:107–116.10.1002/masy.200900034Search in Google Scholar
Röhrling, J., Potthast, A., Rosenau, T., Lange, T., Ebner, G., Sixta, H., Kosma, P. (2002) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 1. Method development. Biomacromolecules 3:959–968.10.1021/bm020029qSearch in Google Scholar
Rouquerol, F., Rouquerol, J., King, S. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications. Academic Press, San Diego, CA, 1999.Search in Google Scholar
Scheirs, J., Camino, G., Tumiatti, W. (2001) Overview of water evolution during the thermal degradation of cellulose. Eur. Polym. J. 37: 933–942.10.1016/S0014-3057(00)00211-1Search in Google Scholar
Schimper, C.B., Aigner, N., Haimer, E., Nedelec, J.-M., Hardy-Dessources, A., Neouze, M.-A., Potthast, A., Henniges, U., Russler, A., Rosenau, T., Liebner, F. (2010) Moisture-dependent dimensional stability of shaped cellulose aerogels prior and after stabilization by interpenetrating networks. In: 11th European Workshop on Lignocellulosics and Pulp. University of Hamburg: Hamburg, Germany.Search in Google Scholar
Schimper, C., Haimer, E., Wendland, M., Potthast, A., Rosenau, T., Liebner, F. (2011) The effects of different process parameters on the properties of cellulose aerogels obtained via the Lyocell route. Lenzinger Berichte. 89:109–117.Search in Google Scholar
Sescousse, R., Gavillon, R., Budtova, T. (2011a) Aerocellulose from cellulose–ionic liquid solutions: preparation, properties and comparison with cellulose-NaOH and cellulose-NMMO routes. Carbohydr. Polym. 83:1766–1774.10.1016/j.carbpol.2010.10.043Search in Google Scholar
Sescousse, R., Gavillon, R., Budtova, T. (2011b) Wet and dry highly porous cellulose beads from cellulose–NaOH–water solutions: influence of the preparation conditions on beads shape and encapsulation of inorganic particles. J. Mater. Sci. 46:759–765.10.1007/s10853-010-4809-5Search in Google Scholar
Sharma, R.K., Fry, J.L. (1983) Instability of anhydrous tetra-n-alkylammonium fluorides. J. Org. Chem. 48:2112–2114.10.1021/jo00160a041Search in Google Scholar
Soykeabkaew, N., Arimoto, N., Nishino, T., Peijs, T. (2008) All-cellulose composites by surface selective dissolution of aligned ligno-cellulosic fibres. Compos. Sci. Technol. 68:2201–2207.10.1016/j.compscitech.2008.03.023Search in Google Scholar
Toral, R., Chakrabarti, A., Gunton, J. (1995) Large scale simulations of the two-dimensional Cahn-Hilliard Model. Physica A. 213:41.10.1016/0378-4371(94)00146-KSearch in Google Scholar
Tsioptsias, C., Stefopoulos, A., Kokkinomalis, I., Papadopoulou, L., Panayiotou, C. (2008) Development of micro- and nano-porous composite materials by processing cellulose with ionic liquids and supercritical CO2. Green Chem. 10:965–971.10.1039/b803869dSearch in Google Scholar
Zhang, L., Mao, Y., Zhou, J., Cai, J. (2005) Effects of coagulation conditions on the properties of regenerated cellulose films prepared in NaOH/urea aqueous solution. Ind. Eng. Chem. Res. 44:522–529.10.1021/ie0491802Search in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- Advances in biorefinery research
- Original Articles
- Techno-economic feasibility of bioethanol production via biorefinery of olive tree prunings (OTP): optimization of the pretreatment stage
- Designing an olive tree pruning biorefinery for the production of bioethanol, xylitol and antioxidants: a techno-economic assessment
- Structural characteristics of lignin in pruning residues of olive tree (Olea europaea L.)
- Production of xylooligosaccharides and cellulosic ethanol from steam-exploded barley straw
- A commercial laccase-mediator system to delignify and improve saccharification of the fast-growing Paulownia fortunei (Seem.) Hemsl.
- Organosolv pretreated beech wood as a substrate for acetone butanol ethanol extractive fermentation
- Fine-fibrous cellulose II aerogels of high specific surface from pulp solutions in TBAF·H2O/DMSO
- Oil-absorbing porous cellulosic material from sized wood pulp fines
- Novel protein-repellent and antimicrobial polysaccharide multilayer thin films
- Environmental sustainability assessment of HMF and FDCA production from lignocellulosic biomass through life cycle assessment (LCA)
- Review
- Lignin-based foams as insulation materials: a review
Articles in the same Issue
- Frontmatter
- Editorial
- Advances in biorefinery research
- Original Articles
- Techno-economic feasibility of bioethanol production via biorefinery of olive tree prunings (OTP): optimization of the pretreatment stage
- Designing an olive tree pruning biorefinery for the production of bioethanol, xylitol and antioxidants: a techno-economic assessment
- Structural characteristics of lignin in pruning residues of olive tree (Olea europaea L.)
- Production of xylooligosaccharides and cellulosic ethanol from steam-exploded barley straw
- A commercial laccase-mediator system to delignify and improve saccharification of the fast-growing Paulownia fortunei (Seem.) Hemsl.
- Organosolv pretreated beech wood as a substrate for acetone butanol ethanol extractive fermentation
- Fine-fibrous cellulose II aerogels of high specific surface from pulp solutions in TBAF·H2O/DMSO
- Oil-absorbing porous cellulosic material from sized wood pulp fines
- Novel protein-repellent and antimicrobial polysaccharide multilayer thin films
- Environmental sustainability assessment of HMF and FDCA production from lignocellulosic biomass through life cycle assessment (LCA)
- Review
- Lignin-based foams as insulation materials: a review