Novel protein-repellent and antimicrobial polysaccharide multilayer thin films
-
Matea Korica
Abstract
Nanostructured and bio-active polysaccharide-based thin films were manufactured by means of subsequent spin-coated deposition of a regenerated cellulose (RC) layer and a 2,2,6,6-Tetramethylpiperidine-1-oxyl radical (TEMPO) oxidised cellulose nanofibril (TOCN) layer. The bio-activity of the bilayer was achieved by addition of chitosan (CS). The chitosan was either mixed with the TOCN (TOCN+CS) and deposited on the RC layer by spin-coating, or deposited on the RC and TOCN bilayer by pumping its aqueous solution with various pH over the surface of the bilayer. The water content of the thin films and the CS interactions with the bilayer during deposition were studied in situ by means of a quartz crystal microbalance with dissipation (QCM-D). The pH dependent charging behaviour of the TOCN, TOCN+CS and CS dispersions was evaluated by pH-potentiometric titrations. The surface morphology of the thin films was characterised by atomic force microscopy (AFM). The bio-activity of the thin films was evaluated by studying their protein-repellent properties in situ with a continuous flow of bovine serum albumin (BSA) by means of QCM-D and by evaluating their antibacterial properties in vitro against Staphylococcus aureus and Escherichia coli. These polysaccharide-based thin films are high value-added products because of their multifunctionality, high water absorbance capacity, protein-repellence and antimicrobial activity, and have the potential for medical application as a wound dressing material.
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: The authors wish to thank the Ministry of Education, Science and Technological Development of the Republic of Serbia for financial support through the project OI 172029.
Employment or leadership: None declared.
Honorarium: None declared.
References
Alarcón, B., Lacal, J.C., Fernández-Sousa, J.M., Carrasco, L. (1984) Screening for new compounds with antiherpes activity. Antiviral Res. 4:234–244.10.1016/0166-3542(84)90029-9Search in Google Scholar
Aulin, C., Ahola, S., Josefsson, P., Nishino, T., Hirose, Y., Österberg, M., Wågberg, L. (2009) Nanoscale cellulose films with different crystallinities and mesostructures – their surface properties and interaction with water. Langmuir 25:7675–7685.10.1021/la900323nSearch in Google Scholar
Chung, Y.C., Chen, C.Y. (2008) Antibacterial characteristics and activity of acid-soluble chitosan. Bioresour. Technol. 99:2806–2814.10.1016/j.biortech.2007.06.044Search in Google Scholar
Dimilla, P.A., Albelda, S.M., Quinn, J.A. (1992) Adsorption and elution of extracellular matrix proteins on non-tissue culture polystyrene Petri dishes. J. Colloid Interface Sci. 153:212–225.10.1016/0021-9797(92)90313-BSearch in Google Scholar
Elschner, T., Bračič, M., Mohan, T., Kargl, R., Stana-Kleinschek, K. (2018) Modification of cellulose thin films with lysine moieties: a promising approach to achieve antifouling performance. Cellulose 25:537–547.10.1007/s10570-017-1538-9Search in Google Scholar
Fulton, J.A., Blasiole, K.N., Cottingham, T., Tornero, M., Graves, M., Smith, L.G., Mirza, S., Mostow, E.N. (2012) Wound dressing absorption: a comparative study. Adv. Skin Wound Care 25:315–320.10.1097/01.ASW.0000416003.32348.e0Search in Google Scholar PubMed
Genco, T., Zemljič, L., Bračič, M., Stana-Kleinschek, K., Heinze, T. (2012) Characterization of viscose fibers modified with 6-deoxy-6-amino cellulose sulfate. Cellulose 19:2057–2067.10.1007/s10570-012-9778-1Search in Google Scholar
Gupta, B.S., Edwards, J.V. (2009) Textile materials and structures for wound care products. In: Advanced Textiles for Wound Care. Ed. Rajendran, S. Woodhead Publishing Limited, Boca Raton FL. pp. 48–96.10.1533/9781845696306.1.48Search in Google Scholar
Hirano, S., Noshiki, Y., Kinugawa, J., Higashijima, H., Hayashi, T. (1987) Chitin and chitosan for use as novel biomedical materials. In: Advances in Biomedical Polymers. Ed. Gebelein, L.G. Plenum, New York, NY. pp. 285–297.10.1007/978-1-4613-1829-3_26Search in Google Scholar
Hosokawa, J., Nishiyama, M., Yoshihara, K., Kubo, T., Terabe, A. (1991) Reaction between chitosan and cellulose on biodegradable composite film formation. Ind. Eng. Chem. Res. 30:788–792.10.1021/ie00052a025Search in Google Scholar
Hussain, Z., Khalaf, M., Adil, H., Zageer, D., Hassan, F., Mohammed, S., Yousif, E. (2016) Metal complexes of Schiff’s bases containing sulfonamides nucleus: a review. Res. J. Pharm. Biol. Chem. Sci. 7:1008–1025.Search in Google Scholar
Isogai, A., Saito, T., Fukuzumi, H. (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85.10.1039/C0NR00583ESearch in Google Scholar
Jocić, D., Topalović, T. (2004) Biopolymer chitosan: properties, interactions and its use in the treatment of textiles, review paper. Hem. Ind. 58:457–469.10.2298/HEMIND0410457JSearch in Google Scholar
Khalil, A., Bhat, A., Yusra, I. (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr. Polym. 87:963–979.10.1016/j.carbpol.2011.08.078Search in Google Scholar
Kingkaew, J., Kirdponpattara, S., Sanchavanakit, N., Pavasant, P., Phisalaphong, M. (2014) Effect of molecular weight of chitosan on antimicrobial properties and tissue compatibility of chitosan-impregnated bacterial cellulose films. Biotechnol. Bioprocess Eng. 19:534–544.10.1007/s12257-014-0081-xSearch in Google Scholar
Kittle, J.D., Du, X., Jiang, F., Qian, C., Heinze, T., Roman, M., Esker, A.R. (2011) Equilibrium water contents of cellulose films determined via solvent exchange and quartz crystal microbalance with dissipation monitoring. Biomacromolecules 12:2881–2887.10.1021/bm200352qSearch in Google Scholar
Klemm, D., Kramer, F., Moritz, S., Lindström, T., Aknerfors, M., Gray, D., Dorris A. (2012) Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. 50: 5438–5466.10.1002/anie.201001273Search in Google Scholar
Lin, N., Dufresne, A. (2014) Nanocellulose in biomedicine: current status and future Prospect. Eur. Polym. J. 59:302–325.10.1016/j.eurpolymj.2014.07.025Search in Google Scholar
Milanović, J., Kostić, M., Škundrić, P. (2012) Structure and properties of TEMPO-oxidized cotton fibers. CI&CEQ 18:473–481.10.2298/CICEQ120114024MSearch in Google Scholar
Mishima, T., Hisamatsu, M., York, W.S., Teranishi, K., Yamada, T. (1998) Adhesion on β-D-glucans to cellulose. Carboxydr. Res. 308:389–395.10.1016/S0008-6215(98)00099-8Search in Google Scholar
Mohan, T., Spirk, S., Kargl, R., Doliska, A., Vessel, A., Salzmann, I., Resel, R., Ribitsch, V., Stana-Kleinschek, K. (2012) Exploring the rearrangement of amorphous cellulose model thin films upon heat treatment. Soft Matter 8:9807–9815.10.1039/c2sm25911gSearch in Google Scholar
Mohan, T., Findenig, G., Höllbacher, S., Cerny, C., Ristić, T., Kargl, R., Spirk, S., Maver, U., Stana-Kleinschek, K., Ribitsch, V. (2014) Interaction and enrichment of protein on cationic polysaccharide surfaces. Colloids Surf. B Biointerfaces 123:533–541.10.1016/j.colsurfb.2014.09.053Search in Google Scholar PubMed
Myllytie, P., Salmi, J., Laine, J. (2009) The influence of pH on the adsorption and interaction of chitosan with cellulose. BioRes. 4:1647–1662.10.15376/biores.4.4.1647-1662Search in Google Scholar
Naseri-Nosar, M., Ziora, Z.M. (2018) Wound dressings from naturally-occurring polymers: a review on homopolysaccharide-based composites. Carbohydr. Polym. 189:379–398.10.1016/j.carbpol.2018.02.003Search in Google Scholar PubMed
Nikolic, T., Kostic, M., Praskalo, J., Pejic, B., Petronijevic, Z., Skundric, P. (2010) Sodium periodate oxidized cotton yarn as carrier for immobilization of trypsin. Carbohydr. Polym. 82:976–981.10.1016/j.carbpol.2010.06.028Search in Google Scholar
Nikolic, T., Milanovic, J., Kramar, A., Petronijevic, Z., Milenkovic, L., Kostic, M. (2014) Preparation of cellulosic fibers with biological activity by immobilization of trypsin on periodate oxidized viscose fibers. Cellulose 21:1369–1380.10.1007/s10570-014-0171-0Search in Google Scholar
Orelma, H., Filpponen, I., Johansson, L.S., Laine, J., Rojas, O.J. (2012) Modification of cellulose films by adsorption of CMC and chitosan for controlled attachment of biomolecules. Biomacromolecules 12:4311–4318.10.1021/bm201236aSearch in Google Scholar PubMed
Peršin, Z., Mavera, U., Pivec, T., Maver, T., Vesela, A., Mozetič, M., Stana-Kleinschek, K. (2014) Novel cellulose based materials for safe and efficient wound treatment. Carbohydr. Polym. 100:55–64.10.1016/j.carbpol.2013.03.082Search in Google Scholar PubMed
Phaechamud, T., Yodkhum, K., Charoenteeraboon, J., Tabata, Y. (2015) Chitosan-aluminum monostearate composite sponge dressing containing asiaticoside for wound healing and angiogenesis promotion in chronic wound. Mater. Sci. Eng. C Mater. Biol. Appl. 50:210–25.10.1016/j.msec.2015.02.003Search in Google Scholar PubMed
Pillai, C.K.S., Paul, W., Sharma, C.P. (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog. Polym. Sci. 34:641–678.10.1016/j.progpolymsci.2009.04.001Search in Google Scholar
Rabe, M., Verdes, D., Seeger, S. (2011) Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci. 162:87–106.10.1016/j.cis.2010.12.007Search in Google Scholar PubMed
Ravi Kumar, M.N.V., Muzzarelli, R.A.A., Muzzarelli, C., Sashiwa, H., Domb, A.J. (2004) Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 104:6017–6084.10.1021/cr030441bSearch in Google Scholar PubMed
Ristić, T., Mohan, T., Kargl, R., Hribernik, S., Doliška, A., Stana-Kleinschek, K., Fras, L. (2014) A study on the interaction of cationized chitosan with cellulose surfaces. Cellulose 21:2315–2325.10.1007/s10570-014-0267-6Search in Google Scholar
Ristić, T., Hribernik, S., Fras-Zemljič, L. (2015) Electrokinetic properties of fibres functionalised by chitosan and chitosan nanoparticles. Cellulose 22:3811–3823.10.1007/s10570-015-0760-6Search in Google Scholar
Roemhild, K., Niemz, F., Mohan, T., Hribernik, S., Kurecic, M., Ganser, C., Teichert, C., Spirk, S. (2016) The cellulose source matters-hollow semi spheres or fibers by needleless electrospinning. Macromol. Mater. Eng. 301:42–47.10.1002/mame.201500191Search in Google Scholar
Sauerbrey, G. (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 155:206–222.10.1007/BF01337937Search in Google Scholar
Shahid-Ul-Islam, Shahid, M., Mohammad, F. (2013) Green chemistry approaches to develop antimicrobial textiles based on sustainable biopolymers-a review. Ind. Eng. Chem. Res. 52:5245–5260.10.1021/ie303627xSearch in Google Scholar
Stana-Kleinschek, K., Ehmann, H.M.A., Spirk, S., Doliška, A., Fasl, H., Fras-Zemljič, L., Kargl, R., Mohan, T., Breitwieser, D., Ribitsch V. (2012) Cellulose and other polysaccharides surface properties and their characterisation. In: The European Polysaccharide Network of Excellence (EPNOE). Ed. Navard, P. Springer-Verlag, Wien. pp. 215–251.10.1007/978-3-7091-0421-7_8Search in Google Scholar
Strnad, S., Šauperl, O., Fras-Zemljič, L. (2010) Cellulose fibres functionalised by chitosan: characterization and application. In: Biopolymers. Ed. Elnashar, M. InTech, Rijeka. pp. 181–200.10.5772/10262Search in Google Scholar
Suzuki, S., Ogawa, Y., Ohura, Y., Hashimoto, K., Suzuki, M. (1982) Chitin/Chitosan. In: Proceedings of the 2nd International Conference on Chitin/Chitosan, Tottori, Japan, Eds. Hirano, S., Tokura, S. Japan Soc. p. 210.Search in Google Scholar
Teramoto, A., Takagi, Y., Hachimori, A., Abe, K. (1999) Interaction of albumin with polysaccharides containing ionic groups. Polym. Adv. Technol. 10:681–686.10.1002/(SICI)1099-1581(199912)10:12<681::AID-PAT920>3.0.CO;2-SSearch in Google Scholar
Tokura, S., Ueno, K., Miyazaki, S., Nishi, N. (1997) Molecular weight dependent antimicrobial activity by chitosan. Macromol. Symp. 120:1–9.10.1007/978-3-642-80289-8_21Search in Google Scholar
Vallée, A., Humblot, V., Al Housseiny, R., Boujday, S., Pradier, C-M. (2013) BSA adsorption on aliphatic and aromatic acid SAMs: investigating the effect of residual surface charge and sublayer nature. Colloids Surf. B Biointerfaces 109:136–142.10.1016/j.colsurfb.2013.03.014Search in Google Scholar
Windler, L., Height, M., Nowack, B. (2013) Comparative evaluation of antimicrobials for textile applications. Environ. Int. 53:62–73.10.1016/j.envint.2012.12.010Search in Google Scholar PubMed
Zeronian, S.H., Inglesby, M.K. (1995) Bleaching of cellulose by hydrogen peroxide. Cellulose 2:265–272.10.1007/BF00811817Search in Google Scholar
Zhang, S., Wang, P., Wu, R., Peng, H., Wu, R. (2016) Preparation and properties of oxidized regenerated cellulose by hydrogen peroxide. CIESC J. 67:2401–2409.Search in Google Scholar
Zhou, Q., Rutland, M.W., Teeri, T.T., Brumer, H. (2007) Xyloglucan in cellulose modification. Cellulose 14:625–641.10.1007/s10570-007-9109-0Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/hf-2018-0094).
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- Advances in biorefinery research
- Original Articles
- Techno-economic feasibility of bioethanol production via biorefinery of olive tree prunings (OTP): optimization of the pretreatment stage
- Designing an olive tree pruning biorefinery for the production of bioethanol, xylitol and antioxidants: a techno-economic assessment
- Structural characteristics of lignin in pruning residues of olive tree (Olea europaea L.)
- Production of xylooligosaccharides and cellulosic ethanol from steam-exploded barley straw
- A commercial laccase-mediator system to delignify and improve saccharification of the fast-growing Paulownia fortunei (Seem.) Hemsl.
- Organosolv pretreated beech wood as a substrate for acetone butanol ethanol extractive fermentation
- Fine-fibrous cellulose II aerogels of high specific surface from pulp solutions in TBAF·H2O/DMSO
- Oil-absorbing porous cellulosic material from sized wood pulp fines
- Novel protein-repellent and antimicrobial polysaccharide multilayer thin films
- Environmental sustainability assessment of HMF and FDCA production from lignocellulosic biomass through life cycle assessment (LCA)
- Review
- Lignin-based foams as insulation materials: a review
Articles in the same Issue
- Frontmatter
- Editorial
- Advances in biorefinery research
- Original Articles
- Techno-economic feasibility of bioethanol production via biorefinery of olive tree prunings (OTP): optimization of the pretreatment stage
- Designing an olive tree pruning biorefinery for the production of bioethanol, xylitol and antioxidants: a techno-economic assessment
- Structural characteristics of lignin in pruning residues of olive tree (Olea europaea L.)
- Production of xylooligosaccharides and cellulosic ethanol from steam-exploded barley straw
- A commercial laccase-mediator system to delignify and improve saccharification of the fast-growing Paulownia fortunei (Seem.) Hemsl.
- Organosolv pretreated beech wood as a substrate for acetone butanol ethanol extractive fermentation
- Fine-fibrous cellulose II aerogels of high specific surface from pulp solutions in TBAF·H2O/DMSO
- Oil-absorbing porous cellulosic material from sized wood pulp fines
- Novel protein-repellent and antimicrobial polysaccharide multilayer thin films
- Environmental sustainability assessment of HMF and FDCA production from lignocellulosic biomass through life cycle assessment (LCA)
- Review
- Lignin-based foams as insulation materials: a review