Abstract
The bacterial and micromycete complexes in the rhizosphere of sunflower plants non-infected and infected with broomrape (Orobanche cumana Wallr.) have been compared. The investigations were carried out in the conditions of a stationary infectious field which was annually enriched with infected plant residues and broomrape seeds collected in different regions of Ukraine. Soil is leached, low-humic chernozem with acidic pH. The soil samples selected at the end of vegetation from the rhizosphere of healthy and infected with broomrape plants of sunflower breeding samples. The total number of bacteria found in the rhizosphere of sunflower plants infected by the parasite did not differ significantly from the control and was 11.7 and 12.1 million CFU / g of soil, respectively. The numbers of ammonifiers as well as bacterial microflora, using for its life mineral nitrogen, and pedotrophs and oligotrophs in the compared soil samples did not differ significantly, and generally corresponded to this type of soil. Although in general, both tested samples of soil were characterized by a low content of bacteria of the genus Azotobacter, the number of representatives of this genus in the rhizosphere of parasite-infected plants was somewhat less than in control (35 % and 21 %, respectively). However, unlike most bacteria, the number of micromycetes detected on Czapek-Dox and starch-ammonia agar media, in the rhizosphere of plants infected by broomrape almost twice exceeded the number of these microorganisms in the rhizosphere of healthy plants. Analysis of the generic and species composition of microscopic fungi showed that in the rhizosphere of sunflower plants infected by the parasite a very specific mycocenosis was formed that differ from a mycocenosis of healthy plants. This mycocenosis was characterized by a much smaller number of genera and species of micromycetes. At the same time for the structure of the fungal cenosis of diseased plants there was a characteristic increase in the proportion of toxin-forming fungi of the Aspergillus and Penicillium genera with active conidiogenesis. The obtained data testify not only to the differences in the microbial complexes in the rhizosphere of sunflower plants non-infected and infected by broomrape, but also indicate the direction of action of this parasite.
Résumé
Broomrape (Orobanche cumana Wallr.) peut influencer la cénose microbienne dans la rhizosphère du tournesol
Les complexes bactériens et micromycètes de la rhizosphère des plants de tournesol non infectés et infectés par le broomrape (Orobanche cumana Wallr.) ont été comparées. Les investigations ont été menées dans les conditions d’un champ infectieux stationnaire enrichi annuellement en résidus de plantes infectés et en graines de broomrape collectées dans différentes régions de l’Ukraine. Le sol est lessivé, le chernozem à faible humidité avec un pH acide. Les échantillons de sol sélectionnés à la fin de la végétation de la rhizosphère des plantes saines et infectées par le broomrape des échantillons de reproduction de tournesol. Le nombre total de bactéries trouvées dans la rhizosphère des plants de tournesol infectés par le parasite ne différait pas significativement de celui des témoins et était respectivement de 11,7 et 12,1 millions d’UFC / g de sol. Le nombre d’ammonificateurs ainsi que la microflore bactérienne, utilisant pour sa vie l’azote minéral, et les pédotrophes et oligotrophes dans les échantillons de sol comparés, ne différaient pas de manière significative et correspondaient généralement à ce type de sol. Bien qu’en général les deux échantillons de sol testés aient été caractérisés par une faible teneur en bactéries du genre Azotobacter, le nombre de représentants de ce genre dans la rhizosphère des plantes infectées par le parasite était légèrement inférieur à celui des témoins (35 % et 21 %, respectivement). Cependant, contrairement à la plupart des bactéries, le nombre de micromycètes détectés sur les milieux Czapek-Dox et gélose-amidon-ammoniac, dans la rhizosphère des plantes infectées par le broomrape, a presque doublé le nombre de ces microorganismes dans la rhizosphère des plantes saines. L’analyse de la composition générique et de la composition spécifique de hongos microscopiques a montré que dans la rhizosphère des plants de tournesol infectés par le parasite, une mycocénose très spécifique diffère d’une mycocénose de plantes saines. Cette mycocénose était caractérisée par un nombre beaucoup plus faible de genres et d’espèces de micromycètes. Dans le même temps, pour la structure de la cénose fongique des plantes malades, il y avait une augmentation caractéristique de la proportion de hongos formant des toxines des genres Aspergillus et Penicillium avec une conidiogenèse active. Les données obtenues témoignent non seulement des différences de complexes microbiens dans la rhizosphère des plants de tournesol non infectés et infectés par le broomrape, mais indiquent également la direction d’action de ce parasite.
Resumen
Broomrape (Orobanche cumana Wallr.) puede influir en el cenosis microbiano en la rizosfera del girasol
Se han comparado los complejos bacterianos y micromicéticos en la rizosfera de plantas de girasol no infectadas e infectadas con broomrape (Orobanche cumana Wallr.). Las investigaciones se llevaron a cabo en las condiciones de un campo infeccioso estacionario que se enriqueció anualmente con residuos vegetales infectados y semillas de broomrape recogidas en diferentes regiones de Ucrania. El suelo es chernozem liofilizado con pH ácido. Las muestras de suelo seleccionadas al final de la vegetación de la rizosfera de las plantas sanas e infectadas con broomrape de girasol. El número total de bacterias encontradas en la rizosfera de plantas de girasol infectadas por el parásito no difirió significativamente del control y fue de 11.7 y 12.1 millones de UFC / g de suelo, respectivamente. El número de amonificantes así como también de microflora bacteriana, que utiliza nitrógeno mineral durante su vida útil, y pedotrofos y oligotrofos en las muestras de suelo comparadas no difirió significativamente, y generalmente correspondía a este tipo de suelo. Aunque en general, las dos muestras de suelo evaluadas se caracterizaron por un bajo contenido de bacterias del género Azotobacter, el número de representantes de este género en la rizosfera de plantas infectadas con parásitos fue algo menor que el control (35 % y 21 %, respectivamente). Sin embargo, a diferencia de la mayoría de las bacterias, la cantidad de micromicetos detectados en los medios de agar Czapek-Dox y almidón-amoníaco, en la rizosfera de las plantas infectadas con broomrape, casi excedió el número de estos microorganismos en la rizosfera de las plantas sanas. El análisis de la composición genérica y de especies de hongos microscópicos mostró que en la rizosfera de las plantas de girasol infectadas por el parásito se formó una micocenosis muy específica que difiere de una micocenosis de plantas sanas. Esta mycocenosis se caracterizó por un número mucho más pequeño de géneros y especies de micromicetos. Al mismo tiempo, para la estructura de la cenosis fúngica de plantas enfermas, hubo un aumento característico en la proporción de hongos formadores de toxinas de los géneros Aspergillus y Penicillium con conidiogénesis activa. Los datos obtenidos testifican no solo las diferencias en los complejos microbianos en la rizosfera de las plantas de girasol no infectadas e infectadas por broomrape, sino que también indican la dirección de acción de este parásito.
References
Antonova, T.S., Araslanova, N.M., Strelnikov, E.A., Ramazanova, S.A., Guchetl, S.Z., Tchelyustnikova, T.A., 2012. Some peculiarities of ontogenesis of Orobanche cumana Wallr., parasitizing on sunflower in Rostov region of Russian Federation. Helia 35(56): 99–110.10.2298/HEL1256099ASearch in Google Scholar
Babayants, O.V., 2011. Immunological characteristic of wheat plant resources and verification of genetic protection against pathogens of fungal aetiology in the Steppe region of Ukraine: Thesis for research degree of Doctor of Sciences in Biology on speciality 06.01.11 – Phytopatology, the National University of Life and Environmental Sciences of Ukraine, Kyiv, pp. 48 (In Ukrainian).Search in Google Scholar
Badri, D.V., Vivanco, J.M., 2009. Regulation and function of root exudates. Plant, Cell & Environment 32(6): 666–681.10.1111/j.1365-3040.2009.01926.xSearch in Google Scholar
Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S., Vivanco, J.M., 2006. The role of root exudates in Rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology 57: 233–266.10.1146/annurev.arplant.57.032905.105159Search in Google Scholar PubMed
Belyuchenko, I.S., 2016. Micromycete composition in pure and combined crops in cultivated land. Biotechnology Research Asia 13(3): 1567–1572.10.13005/bbra/2300Search in Google Scholar
Bilaj, V.I., Koval, E.Z., 1988. Aspergillus, Nauk, Dumka, Kiev, pp. 204. (In Russian).Search in Google Scholar
Domsh, K.H., Gams, W., Andersen, T.H., 1993. Compendium of Soil Fungi, Acad. Press, London, pp. 859.Search in Google Scholar
Dudka, I.A., Vasser, S.P., Ellanskaya, I.A., et al., 1982. Methods of Experimental Mycology, Reference book (ed. V.I. Bilaj). Nauk, Dumka, Kiev, pp. 550. (In Russian).Search in Google Scholar
Fernandez-Martinez, J.M., Dominguez, J., Perez-Vich, B., Velasco, L., 2008. Update on breeding for resistance to sunflower broomrape. Helia 31: 73–84.10.2298/HEL0848073FSearch in Google Scholar
Haldar, S., Sengupta, S., 2015. Plant-microbe cross-talk in the Rhizosphere: Insight and biotechnological potential. Open Microbiology Journal 9: 1–7.10.2174/1874285801509010001Search in Google Scholar PubMed PubMed Central
Hoog, G.S., Guarro, J., Gene, J., Figueras, M.J., 2000. Atlas of Clinical Fungi, Univ. Rovira i Virgili, Reus, pp. 1126.Search in Google Scholar
Hu, J.Q., Feng, J.Y., 2012. The chemical composition and pharmacological effects of Cistanche. Clinical Journal of Chinese Medicine 15: 26–28.Search in Google Scholar
Kaya, Y., Evci, G., Pekcan, V., Gucer, T., 2004. Determining new broomrape infested areas, resistant lines and hybrids in Trakya region of Turkey. Helia 27: 211–218.10.2298/HEL0440211KSearch in Google Scholar
Kaya, Y., 2014. Current situation of sunflower broomrape around the world. In: Proceedings of 3rd International Symposium on Broomrape (Orobanche spp.) in Sunflower, Cordoba, Spain, pp. 9–18.Search in Google Scholar
Kirilova, I., Hristeva, T., Bozhinova, R., Mishev, K., Vassileva, V., Dimitrova, A., Denev, I., 2018. Plant parasitism from the prospective of the system host plants - parasitic broomrapes-soil microbiome. In: Proceedings International Congress on Oil and Proteins Crops. Meeting of the EUCARPIA Oil and Protein Crops Section, Chisinau, Republica Moldova, pp. 108.Search in Google Scholar
Kizilkaya, R., 2009. Nitrogen fixation capacity of Azotobacter spp. strains isolated from soils in different ecosystems and relationship between them and the microbiological properties of soils. Journal Environment Biology 30(1): 73–82.Search in Google Scholar
Kostyuchenko, N.I., Lyakh, V.A., 2017. Peculiarities of taxonomic structure of micromycete complex in root zone of sunflower in conditions of Southern Steppe of Ukraine. Helia 40(67): 147–159.10.1515/helia-2017-0012Search in Google Scholar
Kurdish, І.V., 2010. Introductions of Microorganisms in Agricultural System, Naukova Dumka, Kiev, pp. 255. (In Ukrainian).Search in Google Scholar
Mahaffee, W.F., Klopper, J.W., 1997. Temporal changes in the bacterial communities of soil, rhizosphere and endorhiza associated with field-grown cucumder (Cucumis sativus L.). Microbiology Ecology 34: 210–233.10.1007/s002489900050Search in Google Scholar PubMed
Makhlayuk, V.P., 1992. Medicinal Plants in Folk Medicine, Niva Rossii, Moscow, pp. 477. (In Russian).Search in Google Scholar
Megarran, E., 1992. Ecological Diversity and Its Measurement, Mir, Moscow, pp. 184. (In Russian).Search in Google Scholar
Melero-Vara, J.M., Dominguez, J., Fernandez-Martinez, J.M., 2000. Update on sunflower broomrape situation in Spain: Racial status and sunflower breeding for resistance. Helia 23(33): 45–55.10.1515/helia.2000.23.33.45Search in Google Scholar
Mirchink, T.G., 1988. Soil Mycology, MGU, Moscow, pp. 220. (In Russian).Search in Google Scholar
Pacureanu-Joita, M., Ciuca, M., Sava, E., 2012. Broomrape (Orobanche cumana Wallr.), the most important parasite in sunflower: Virulence, race distribution, host resistance. In: Proceedings of 18th International Sunflower Conference, Mar del Plata, Argentina, pp. 1052–1057.Search in Google Scholar
Satton, D., Fothergill, A., Rinaldi, M., 2001. Guide to Pathogenic and Opportunistic Fungi, Mir, Moscow, pp. 486. (In Russian).Search in Google Scholar
Shindrova, P., 2006. Broomrape (Orobanche cumana Wallr.) in Bulgaria-distribution and race composition. Helia 29(44): 111–120.10.2298/HEL0644111SSearch in Google Scholar
Yang, С.-H., Crowley, D.E., 2000. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Applied and Environment Microbiology 66(1): 345–451.10.1128/AEM.66.1.345-351.2000Search in Google Scholar PubMed PubMed Central
Yeshchenko, V.O., 2011. To the method of determining the biological activity of the soil. Collection of Scientific Works of Uman National University of Horticulture 77: 21–26. (In Ukrainian).Search in Google Scholar
Zvyagintsev, D.G., 1991. Methods of Soil Microbiology and Biochemistry, MGU, Moscow, pp. 303. (In Russian).Search in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Research Articles
- Genetic Resources of the Sunflower Crop Wild Relatives for Resistance to Sunflower Broomrape
- Broomrape (Orobanche cumana Wallr.) can Influence the Microbial Cenosis in Sunflower Rhizosphere
- Sunflower Resistance to Race G of Broomrape (Orobanche Cumana Wallr.) In the Russian Federation: the Development of the Lines and the Study of Inheritance
- Methodologies for Plasmopara halstedii Research
- Water use Efficient Sunflower Hybrids having Diverse Cytoplasmic Background
- Inheritance of Top Branching in Sunflower (Helianthus Annuus L.) Collection Samples
- A New Source of Yellow Coloration of the Sunflower Plant Top and Its Importance in Breeding
- Polygenic Inheritance of Bracts Number in Sunflower
- Assessment of Genetic Diversity of Cultivated Sunflower in Terms of Oil Content, Fatty Acid Compositions and Seed Traits
- The Effects of Micronutrient and Organic Fertilizers on Yield and Growth Characteristics of Sunflower (Helianthus annuus L.)
Articles in the same Issue
- Frontmatter
- Research Articles
- Genetic Resources of the Sunflower Crop Wild Relatives for Resistance to Sunflower Broomrape
- Broomrape (Orobanche cumana Wallr.) can Influence the Microbial Cenosis in Sunflower Rhizosphere
- Sunflower Resistance to Race G of Broomrape (Orobanche Cumana Wallr.) In the Russian Federation: the Development of the Lines and the Study of Inheritance
- Methodologies for Plasmopara halstedii Research
- Water use Efficient Sunflower Hybrids having Diverse Cytoplasmic Background
- Inheritance of Top Branching in Sunflower (Helianthus Annuus L.) Collection Samples
- A New Source of Yellow Coloration of the Sunflower Plant Top and Its Importance in Breeding
- Polygenic Inheritance of Bracts Number in Sunflower
- Assessment of Genetic Diversity of Cultivated Sunflower in Terms of Oil Content, Fatty Acid Compositions and Seed Traits
- The Effects of Micronutrient and Organic Fertilizers on Yield and Growth Characteristics of Sunflower (Helianthus annuus L.)