Abstract
Electrophilic heterocyclization of 5,6-disubstituted 3-alkenyl-2-thioxothieno[2,3-d]pyrimidin-4-ones by treatment with p-alkoxyphenyltellurium trichlorides leads to annulation of the thiazoline moiety with the formation of 6,7-disubstituted-2-[dichloro-(p-alkoxyphenyl)telluromethyl]-2,3-dihydro-5Н-[1,3]thiazolo[3,2-а]thieno[2,3-d]pyrimidin-5-one hydrochlorides.
Introduction
Organotellurium compounds show anti-cancer [1], [2], [3], antioxidant [3], [4] and anti-bacterial activity [5] and are used in neuropathy [6], [7], [8], [9], [10], [11]. In this study we analyzed a new route of introduction of tellurium into a heterocyclic system. Electrophilic heterocyclization of unsaturated substrates under the action of tellurium tetrahalides is described for obtaining tellurium-containing fused heterocyclic systems [12], [13], [14]. Using for the same purpose aryltellurium trihalides is barely mentioned in the literature. Indeed, there are only few data about using aryltellurium trihalides in the reaction with unsaturated alcohols, phenols and acids [15], [16], [17], [18]. We choose the N-alkenyl derivatives of 5,6-disubstituted-2-thioxothieno[2,3-d]pyrimidin-4-one as the objects for study electrofilic heterocyclization by p-alkoxyphenyltellurium trihalides.
Results and discussion
5,6-Disubstituted-2-thioxothieno[2,3-d]pyrimidin-4-ones 1–6 were synthesized as shown in Scheme 1 and used subsequently as substrates for electrophilic heterocyclization in the presence of p-alkoxyphenyltellurium trihalides (Scheme 2). The model compounds 1–6 contain a few nucleophilic centers in the molecule, which provides an opportunity to study regioselectivity of the electrophilic cyclization. Although several cyclization pathways could be suggested (not shown), the reaction takes a single route indicated in Scheme 2.
![Scheme 1 Synthesis of 5,6-disubstituted 2-thioxothieno[2,3-d]pyrimidin-4-ones 1–6.](/document/doi/10.1515/hc-2016-0169/asset/graphic/j_hc-2016-0169_scheme_001.jpg)
Synthesis of 5,6-disubstituted 2-thioxothieno[2,3-d]pyrimidin-4-ones 1–6.
![Scheme 2 Synthesis of 6,7-disubstituted-2-(dichloro(p-alkoxyphenyl)telluromethyl)-2,3-dihydro-5Н-[1,3]thiazolo[3,2-а]thieno[2,3-d]pyrimidin-5-ones hydrochlorides.](/document/doi/10.1515/hc-2016-0169/asset/graphic/j_hc-2016-0169_scheme_002.jpg)
Synthesis of 6,7-disubstituted-2-(dichloro(p-alkoxyphenyl)telluromethyl)-2,3-dihydro-5Н-[1,3]thiazolo[3,2-а]thieno[2,3-d]pyrimidin-5-ones hydrochlorides.
The heterocyclization was successfully conducted in acetic acid, chloroform and acetonitrile at different temperatures. It was found that under the optimal conditions the electrophilic heterocyclization is conducted in acetic acid at room temperature. The tellurium-containing compounds 7–15 were regioselectively obtained as the only products. It can be suggested that the addition of aryltellurium trichloride to a double bond of 1–6 takes place to generate the intermediate product A which is a direct precursor to the final product 7–15. In one case the hydrochloride 14 was transformed into a free base 16 (Scheme 2) by treatment with sodium sulfite. This is a remarkable result because the expected reduction of tellurium was not observed. All products 1–16 were fully characterized by spectral methods and elemental analysis.
Conclusion
Electrofilic heterocyclization of N-alkenyl-substituted 2-thioxotieno[2,3-d]pyrimidin-4-ones 1–6 in the presence of an aryltellurium trichloride was investigated. The reaction is highly regioselective.
Experimental
1H NMR (400 MHz) and 13C NMR (100 MHz) spectra were recorded in DMSO-d6 on a Varian Mercury-400 instrument. Melting points were determined on a Stuart SMP30 instrument. Elemental analyses were performed on an Elementar Vario analyzer. All reagents were obtained from commercial suppliers and used without further purification. Anhydrous solvents were prepared according to the standard methods. The p-alkoxyphenyltellurium trihalides were synthesized according to the literature procedure [19].
Synthesis of 5,6-disubstituted 3-alkenyl-2-thioxothieno[2,3-d]pyrimidin-4-ones 1–6
A solution of an ethyl 2-aminothiophene-3-carboxylate (0.05 mol) and allyl or methallyl isothiocyanate [20] (0.05 mol) in ethanol (40 mL) was heated under reflux for 8 h and then treated with an aqueous solution (5 mL) of potassium hydroxide (0.1 mol). The mixture was heated for an additional 2 h, cooled and diluted with aqueous acetic acid. The resultant precipitate of 1–6 was crystallized from ethanol.
5,6-Dimethyl-3-(prop-2-en-1-yl)-2-thioxo-2,3-dihydrothieno[2,3-d]pyrimidin-4(1H)-one (1)
Yield 89%.; mp 211–212°С; lit. mp 191–192°С [21] and 209–212°С [22].
5,6-Dimethyl-3-(2-methylprop-2-en-1-yl)-2-thioxo-2,3-dihydrothieno[2,3-d]pyrimidin-4(1H)-one (2)
Yield 89%; mp 189–190°С; 1H NMR: δ 13.53 (s, 1H), 4.85 (s, 2H), 4.71 (s, 1H), 4.42 (s, 1H), 2.25 (s, 6H), 1.72 (s, 3H); 13C NMR: δ 174.1, 156.8, 148.6, 139.3, 129.3, 125.8, 116.6, 109.2, 50.3, 21.0, 13.0, 12.5. Anal. Calcd for C12H14N2OS2: C, 54.11; H, 5.30; N. 10.52. Found: C, 53.87; H, 5.28; N, 10.44.
3-(Prop-2-en-1-yl)-2-thioxo-2,3,5,6,7,8-hexahydro[1]benzothieno[2,3-d]pyrimidin-4(1H)-one (3)
Yield 85%.; mp 218–219°С; lit. mp 205–208°С [22].
3-(2-Methylprop-2-en-1-yl)-2-thioxo-2,3,5,6,7,8-hexahydro[1]benzothieno[2,3-d]pyrimidin-4(1H)-one (4)
Yield 85%.; mp 202–204°С; 1H NMR: δ 13.56 (s, 1H), 4.85 (s, 2H), 4.72 (s, 1H), 4.42 (s, 1H), 2.75 (m, 2H), 2.64 (m, 2H), 1.77 (m, 4H), 1.72 (s, 3H); 13C NMR: δ 174.3, 156.7, 149.4, 139.4, 131.5, 129.1, 116.0, 109.3, 50.3, 25.4, 24.5, 23.0, 22.1, 21.1. Anal. Calcd for C14H16N2OS2: C, 57.50; H, 5.52; N. 9.58. Found: C, 57.11; H, 5.39; N, 9.41.
3-(Prop-2-en-1-yl)-2-thioxo-1,2,3,5,6,7-hexahydro-4H-cyclopenta[4,5]thieno[2,3-d]pyrimidin-4-one (5)
Yield 85%; mp 223–224°С; 1H NMR: δ 13.61 (s, 1H), 5.88 (m, 1H), 5.14 (s, 1H), 5.10 (d, J=6.5 Hz 1H), 4.96 (d, J=5.1 Hz, 2H), 2.82 (t, J=7.2 Hz, 4H), 2.41–2.29 (m, 2H). Anal. Calcd for C12H12N2OS2: C, 54.52; H, 4.85; N. 10.60. Found: C, 53.98; H, 4.69; N, 10.48.
3-(2-Methyl-prop-2-en-1-yl)-2-thioxo-1,2,3,5,6,7-hexahydro-4H-cyclopenta[4,5]thieno[2,3-d]pyrimidin-4-one (6)
Yield 85%; mp 209–210°С; 1H NMR: δ 13.47 (s, 1H), 4.89 (s, 2H), 4.74 (s, 1H), 4.47 (s, 1H), 2.82 (t, J 6.7 Hz, 4H), 2.41–2.27 (m, 2H), 1.73 (s, 3H); 13C NMR: δ 174.3, 156.4, 153.8, 140.5, 139.3, 134.2, 113.2, 109.3, 50.3, 29.0, 28.7, 28.2, 21.0. Anal. Calcd for C13H14N2OS2: C, 56.09; H, 5.07; N. 10.06. Found: C, 56.11; H, 5.12; N, 10.11.
Synthesis of 6,7-disubstituted-2-(dichloro(p-alkoxyphenyl)-telluromethyl)-2,3-dihydro-5Н-[1,3]thiazolo[3,2-а]thieno[2,3-d]pyrimidin-5-ones hydrochlorides 7–15
A mixture of 5,6-disubstituted 2-thioxothieno[2,3-d]pyrimidin-4-one 1–6 (1 mmol) and p-alkoxyphenyltellurium trichloride (1 mmol)in acetic acid (40 mL) was stirred at room temperature for 8 h. The resultant precipitate was filtered and crystallized from acetic acid.
6,7-Dimethyl-2-[dichloro(4-methoxyphenyl)tellurylmethyl]-2,3-dihydro-5H-[1,3]thiazolo[3,2-a]thieno[2,3-d]pyrimidin-5-one hydrochloride (7)
Yield 73%; mp 201–202°С; 1H NMR: δ 8.05 (d, J=8.9 Hz, 2H), 7.09 (d, J=8.9 Hz, 2H), 4.69 (m, 1H), 4.60 (dd, J=13.0 and 2.6 Hz, 1H), 4.38 (dd, J=12.9 and 7.2 Hz, 1H), 4.04 (dd, J=11.8 and 8.7 Hz, 1H), 3.91 (dd, J=13.0 and 2.6 Hz, 1 H), 3.82 (s, 3H), 2.32 (s, 6H); 13C NMR: δ 162.2, 158.8, 157.1, 135.9, 128.8, 128.7, 125.6, 119.7, 115.4, 56.0, 54.1, 49.9, 13.2. Anal. Calcd for C18H19Cl3N2O2S2Te: C, 36.31; H, 3.55; Cl, 17.86; N. 4.70. Found: C, 36.11; H, 3.39; Cl, 17.52; N, 4.58.
2,6,7-Trimethyl-2-(dichloro(4-methoxyphenyl)tellurylmethyl)-2,3-dihydro-5H-[1,3]thiazolo[3,2-a]thieno[2,3-d]pyrimidin-5-one hydrochloride (8)
Yield 73%; mp 206–207°С; 1H NMR: δ 8.05 (d, J=8.9 Hz, 2H), 7.11 (d, J=9.0 Hz, 2H), 4.85 (d, J=12.9 Hz, 1H), 4.41 (d, J 12.9 Hz, 1H), 4.31 (d, J=11.9 Hz, 1H), 4.22(d, J 11.9 Hz, 1H), 3.81 (s, 3H), 2.34 (s, 6H), 1.91 (s, 3H); 13C NMR: δ 162.0, 161.7, 158.6, 157.1, 135.8, 129.0, 128.7, 125.6, 119.9, 115.4, 59.3, 57.8, 56.0, 54.6, 29.0, 13.2. Anal. Calcd for C19H21Cl3N2O2S2Te: C, 37.44; H, 3.80; Cl, 17.45; N. 4.60. Found: C, 37.19; H, 3.69; Cl, 17.28; N, 4.49.
6,7-Dimethyl-2-(dichloro(4-ethoxyphenyl)tellurylmethyl)-2,3-dihydro-5H-[1,3]thiazolo[3,2-a]thieno[2,3-d]pyrimidin-5-one hydrochloride (9)
Yield 73%; mp 217–218°С; 1H NMR: δ 8.03 (d, J=8.8 Hz, 2H), 7.08 (d, J=8.8 Hz, 2H), 4.68 (m, 1H), 4.60 (d, J=12.8 Hz, 1H), 4.38 (dd, J=12.8, 7.2 Hz, 1H), 4.09 (dt, J=10.5 and 5.2 Hz, 2H), 4.02 (d, J=8.6 Hz, 1H), 3.90 (dd, J=11.8 and 5.9 Hz, 1H), 2.33 (s, 6H), 1.34 (t, J=6.9 Hz, 3H); 13C NMR: δ 162.2, 161.0, 158.9, 157.2, 135.9, 128.8, 128.5, 125.3, 119.7, 115.8, 64.0, 54.1, 49.8, 15.0, 13.2. Anal. Calcd for C19H21Cl3N2O2S2Te: C, 37.44; H, 3.80; Cl, 17.45; N. 4.60. Found: C, 37.26; H, 3.62; Cl, 17.36; N, 4.45.
2,6,7-Trimethyl-2-(dichloro(4-ethoxyphenyl)tellurylmethyl)-2,3-dihydro-5H-[1,3]thiazolo[3,2-a]thieno[2,3-d]pyrimidin-5-one hydrochloride (10)
Yield 73%; mp 201–202°С; 1H NMR: δ 8.03 (d, J=8.8 Hz, 2H), 7.10 (d, J=8.8 Hz, 2H), 4.85 (d, J=12.9 Hz, 1H), 4.41 (d, J=12.9 Hz, 1H), 4.30 (d, J=11.9 Hz, 1H), 4.22 (d, J=11.6 Hz, 1H), 4.09 (q, J=7.0 Hz, 1H), 2.34 (s, 6H), 1.91 (s, 3H), 1.34 (t, J=7.0 Hz, 3H); 13C NMR: δ 162.0, 161.0, 158.6, 157.1, 135.8, 129.0, 128.7, 125.3, 119.9, 115.7, 64.0, 59.3, 57.8, 54.6, 29.0, 15.0, 13.3, 13.1. Anal. Calcd for C20H23Cl3N2O2S2Te: C, 38.53; H, 4.04; Cl, 17.06; N. 4.49. Found: C, 38.35; H, 3.97; Cl, 16.96; N, 4.40.
2-(Dichloro(4-methoxyphenyl)tellurylmethyl)-2,3,6,7,8,9-hexahydro-5H-benzo[4,5]thieno[2,3-d][1,3]thiazolo[3,2-a]pyrimidin-5-one hydrochloride (11)
Yield 74%.; mp 213–214°С; 1H NMR: δ 8.05 (d, J=8.9 Hz, 2H), 7.10 (d, J=8.9 Hz, 2H), 4.69 (m, 1H), 4.61 (dd, J=13.1 and 2.6 Hz, 1H), 4.39 (dd, J=12.9 and 7.1, Hz, 1H), 4.04 (dd, J=11.8 and 8.7 Hz, 1H), 3.91 (dd, J=11.8 and 6.0 Hz, 1H), 2.83 (m, 2H), 2.71 (m, 2H), 1.77 (m, 4H). Anal. Calcd for C20H21Cl3N2O2S2Te: C, 38.65; H, 3.73; Cl, 17.11; N. 4.51. Found: C, 38.11; H, 3.59; Cl, 17.02; N, 4.41.
2-Methyl-2-(dichloro(4-methoxyphenyl)tellurylmethyl)-2,3,6,7,8,9-hexahydro-5H-benzo[4,5]thieno[2,3-d][1,3]thiazolo[3,2-a]pyrimidin-5-one hydrochloride (12)
Yield 74%; mp 228–230°С; 1H NMR: δ 8.07 (d, J=8.8 Hz, 2H), 7.13 (d, J=8.8 Hz, 2H), 4.86 (d, J=13.0 Hz, 1H), 4.42 (d, J=12.9 Hz, 1H), 4.33 (d, J=11.8 Hz, 1H), 4.24 (d, J=11.8 Hz, 1H), 3.84 (s, 3H), 2.86 (m, 2H), 2.73 (m, 2H), 1.93 (s, 3H), 1.79 (m, 4H); 13C NMR: δ 162.3, 161.3, 158.3, 156.4, 135.4, 130.6, 114.9, 58.8, 57.3, 55.6, 54.3, 28.5, 25.3, 24.5, 22.5, 21.8. Anal. Calcd for C21H23Cl3N2O2S2Te: C, 39.69; H, 3.96; Cl, 16.74; N. 4.41. Found: C, 39.48; H, 3.79; Cl, 16.66; N, 4.35.
2-(Dichloro(4-ethoxyphenyl)tellurylmethyl)-2,3,6,7,8,9-hexahydro-5H-benzo[4,5]thieno[2,3-d][1,3]thiazolo[3,2-a]pyrimidin-5-one hydrochloride (13)
Yield 73%; mp 216–218°С; 1H NMR: δ 8.04 (d, J=8.3 Hz, 2H), 7.08 (d, J=8.3 Hz, 2H), 4.71 (m, 1H), 4.58 (d, J=13.0 Hz, 1H), 4.40 (dd, J=12.0 and 7.7 Hz, 1H), 4.16–3.98 (m, 3H), 3.92 (dd, J=10.5 and 5.9 Hz, 1H), 2.83 (m, 2H), 2.70 (m, 2H), 1.77 (m, 4H), 1.35 (t, J=6.6 Hz, 3H); 13C NMR: δ 163.0, 161.0, 159.0, 156.9, 131.4, 130.9, 125.4, 118.9, 115.8, 64.0, 54.1, 49.8, 25.7, 24.9, 23.0, 22.2, 15.0. Anal. Calcd for C21H23Cl3N2O2S2Te: C, 39.69; H, 3.96; Cl, 16.74; N. 4.41. Found: C, 39.33; H, 3.77; Cl, 16.57; N, 4.29.
2-Methyl-2-(dichloro(4-ethoxyphenyl)tellurylmethyl)-2,3,6,7,8,9-hexahydro-5H-benzo[4,5]thieno[2,3-d][1,3]thiazolo[3,2-a]pyrimidin-5-one hydrochloride (14)
Yield 73%; mp 208–209°С; 1H NMR: δ 8.05 (d, J=7.4 Hz, 2H), 7.10 (d, J=7.8 Hz, 2H), 4.86 (d, J=12.9 Hz, 1H), 4.41 (d, J=13.0 Hz, 1H), 4.32 (d, J=11.5 Hz, 1H), 4.24 (d, J=11.6 Hz, 1H), 4.12 (q, J=7.0 Hz, 2H), 2.85(m, 2H), 2.72 (m, 2H), 1.93 (s, 3H), 1.78 (m, 4H), 1.35 (t, J=7.0 Hz, 3H); 13C NMR: δ 162.9, 161.1, 158.8, 156.9, 135.9, 115.8, 64.1, 59.3, 57.9, 54.8, 29.0, 25.8, 25.0, 23.1, 22.3, 15.1. Anal. Calcd for C22H25Cl3N2O2S2Te: C, 40.68; H, 4.19; Cl, 16.37; N. 4.31. Found: C, 40.11; H, 4.05; Cl, 16.15; N, 4.26.
2-Methyl-2-(dichloro(4-methoxyphenyl)tellurylmethyl)-2,3,7,8-tetrahydro-5H,6H-cyclopenta[4,5]thieno[2,3-d][1,3]thiazolo[3,2-a]pyrimidin-5-one hydrochloride (15)
Yield 70%; mp 180–181°С; 1H NMR: δ 8.05 (d, J=8.9 Hz, 2H), 7.11 (d, J=8.9 Hz, 2H), 4.87 (d, J=12.9 Hz, 1H), 4.42 (d, J=12.9 Hz, 1H), 4.30 (d, J=11.9, Hz, 1H), 4.22 (d, J=11.9 Hz, 1H), 3.81(s, 3H), 2.88 (t, J=6.9 Hz, 4H), 2.41–2.30 (m, 2H), 1.91 (s, 3H); 13C NMR: δ 167.9, 158.4, 156.5, 139.7, 136.8, 135.8, 125.6, 116.7, 115.4, 59.2, 57.8, 56.0, 54.7, 29.5, 29.0, 28.8, 28.6, 27.9. Anal. Calcd for C21H23Cl3N2O2S2Te: C, 39.69; H, 3.96; Cl, 16.74; N. 4.41. Found: C, 39.48; H, 3.88; Cl, 16.64; N, 4.32.
Synthesis of 2-methyl-2-(dichloro(4-ethoxyphenyl)tellurylmethyl)-2,3,6,7,8,9-hexahydro-5H-benzo[4,5]thieno[2,3-d][1,3]thiazolo[3,2-a]pyrimidin-5-one (16)
A solution of hydrochloride 14 (0.3 mmol) in DMSO (10 mL) was treated dropwise with a solution of sodium sulfite (1.2 mmol) in water (5 mL). The resultant white precipitate was filtered, washed with water and crystallized from acetic acid; yield 70%; mp 95–96°С; 1H NMR: δ 7,67 (d, J=8.5 Hz, 3H), 6,80 (d, J=8.5 Hz, 3H), 4.38 (d, J=12.6 Hz, 2H), 4.00 (q, J=7 Hz, 3H), 3.49 (s, 3H), 3.32 (s, 9H), 2.80 (s, 4H), 2.69 (s, 4H), 2.54 (s, 2H), 1.80–1.66 (m, 8H), 1.62 (s, 5H), 1.31 (dd, J=14.8 and 7.8 Hz, 6H); 13C NMR: δ 159.3, 157.0, 140.8, 131.4, 131.1, 116.5, 63.6, 59.1, 57.4, 28.1, 25.8, 25.0, 23.1, 22.3, 22.5, 15.2. Anal. Calcd for C22H24Cl2N2O2S2Te: C, 43.10; H, 4.2;, Cl, 11.57; N. 4.57. Found: C, 43.15; H, 4.39; Cl, 11.71; N, 4.61.
References
[1] Cunha, R. L. O. R.; Urano, M. E.; Chagas, J. R.; Almeida, P. C.; Bincoletto, C.; Tersariolb, I. L. S.; Comasseto, J. V. Tellurium-based cysteine protease inhibitors: evaluation of novel organotellurium(IV) compounds as inhibitors of human cathepsin B. Bioorg. Med. Chem. Lett.2005, 15, 755–760.10.1016/j.bmcl.2004.11.012Search in Google Scholar
[2] Abondanza, T. S.; Oliveira, C. R.; Barbosa C. M. V.; Pereira, F. E. G.; Cunha R. L. O. R.; Caires, A. C. F.; Comasseto, J. V.; Queiroz, M. L. S.; Valadares, M. C.; Bincoletto, C. Bcl-2 expression and apoptosis induction in human HL-60 leukaemic cells treated with a novel organotellurium(IV) compound RT-04. Food Chem. Toxicol. 2008, 46, 2540–2445.10.1016/j.fct.2008.04.010Search in Google Scholar
[3] Cunha R. L. O. R.; Gouvea, I. E.; Juliano, L. A glimpse on biological activities of tellurium compounds. Ann. Braz. Acad. Sci. 2009, 81, 393–407.10.1590/S0001-37652009000300006Search in Google Scholar
[4] Andersson, C.; Brattsand, R.; Hallberg, A.; Engman, L.; Persson, J.; Moldeus, P.; Cotgreave, I. Diaryl tellurides as inhibitors of lipid peroxidation in biological and chemical systems. Free Radical Res.1994, 20, 401–410.10.3109/10715769409145639Search in Google Scholar
[5] Soni, D.; Gupta, P.; Kumar, Y.; Chandrashekhar, T. Antibacterial activity of some unsymmetrical diorganyltellurium(IV) dichlorides. Indian J. Biochem. Biophys. 2005, 42, 398–340.Search in Google Scholar
[6] Goodrum, J. F. Role of organotellurium compounds in neuropathy. Neurochem. Res.1998, 3, 1313–1319.10.1023/A:1020704502586Search in Google Scholar
[7] Laden, B.; Porter, T. Inhibition of human squalene monooxygenase by tellurium compounds: evidence of interaction with vicinal sulfhydryls. J. Lipid Res.2001, 42, 235–240.10.1016/S0022-2275(20)31684-9Search in Google Scholar
[8] Wagner, R.; Toews, A.; Morell, P. Tellurium blocks cholesterol synthesis by inhibiting squalene metabolism: preferential vulnerability to this metabolic block leads to peripheral nervous system demyelination. J Neurochem. 1991, 57, 1891–1901.10.1111/j.1471-4159.1991.tb06400.xSearch in Google Scholar
[9] Wagner, R.; Toews, A.; Morell, P. Tellurite specifically affects squalene epoxidase investigations examining the mechanism of telluriuminduced neuropathy. J. Neurochem. 1995, 64, 2169–2176.10.1046/j.1471-4159.1995.64052169.xSearch in Google Scholar
[10] Wieslander, E.; Engman, L.; Svensjö, E.; Erlansson, M.; Johansson, U.; Linden, M.; Andersson, C.; Brattsand, R. Antioxidative properties of organotellurium compounds in cell systems. Biochem. Pharmacol. 1998, 55, 573–584.10.1016/S0006-2952(97)00517-0Search in Google Scholar
[11] Brodsky, M.; Yosef, S.; Galit, R.; Albeck, M.; Longo, D.; Albeck, A.; Sredni, B. The synthetic tellurium compound, AS101, is a novel inhibitor of IL-1β converting enzyme. J. Interferon Cytokine Res.2007, 27, 453–462.10.1089/jir.2007.0168Search in Google Scholar PubMed
[12] Onysko, M.; Lendel, V.; Stanynets, V. Interaction 2 propargylthio-3-phenyl-4-oxo-5,6,7,8-tetrahydrobenzo[b]thieno[2,3-d]pyrimidine with selenium and tellurium tetrahalides. Ukr. Chem. J. 1999, 65, 116–118.Search in Google Scholar
[13] Slivka, M.; Korol, N.; Rusyn, I.; Lendel, V. Synthesis of [1,3]thiazolo[3,2-b][1,2,4]triazol-7-ium and [1,2,4]triazolo[5,1-b][1,3]thiazin-4-ium salts via regioselective electrophilic cyclization of 3-s-alkenylthio-4H-1,2,4-triazoles. Heterocycl. Cоmmun. 2015, 21, 397–401.10.1515/hc-2015-0158Search in Google Scholar
[14] Sadekov, I.; Minkin, V. Tellurium-nitrogen-containing heterocycles. Adv. Heterocycl. Chem. 2001, 79, 2–36.10.1016/S0065-2725(01)79020-4Search in Google Scholar
[15] Comasseto, J.; Grazini, M. Cyclization of olefinic benzyl ethers with aryltellurium trichlorides. Synth. Commun. 1992, 22, 949–954.10.1080/00397919208020859Search in Google Scholar
[16] Borecka, B.; Cameron, S.; Malik, A.; Smith, B. Stereospecific reactions of aryltellurium(lV) trichlorides with 3-cyclohexene-1 –methanol and 3-cyclohexene-1,1-dimethanol: the X-ray crystal structure of 2',4'-dimethoxyphenyl(trans-6-moxabicyclo[3.2.1]oct-4-yl)tellurium(IV) dichloride. Can. J. Chem. 1995, 73, 255–263.10.1139/v95-035Search in Google Scholar
[17] Comasseto, J.; Petragnani, N. Cyclofunctionalization with aryltellurium trichlorides. Synth. Commun. 1983, 13, 889–900.10.1080/00397918308059542Search in Google Scholar
[18] Princival, C.; Dos Santos, A.; Comasseto, J. Solventless and mild procedure to prepare organotellurium(IV) compounds under microwave irradiation. J. Braz. Chem. Soc. 2015, 26, 832–836.10.5935/0103-5053.20150059Search in Google Scholar
[19] Reichel, L.; Kirschbaum, E. Über aromatische Tellurverbindungen. (I. Mitteilung über Organometallverbindungen). Ann. Chem. 1936, 523, 211–223.10.1002/jlac.19365230113Search in Google Scholar
[20] Fizer, M. Methallyl isothiocyanate. Synlett2013; 24, 2019–2020.10.1002/047084289X.rn02413Search in Google Scholar
[21] Smolanka, I. V.; Dobosh, A. A.; Khripak, S. M. Halogenation of some substituted 3-allyl-2-mercapto-3,4-dihydrothieno [2,3-d]pyrimidines. Chem. Heterocycl. Compd.1973, 9, 1169–117010.1007/BF00474798Search in Google Scholar
[22] Sauter, F.; Deinhammer, W. Synthese von 2-Mercapto-thieno[2,3-d]pyrimidin-4(3H)-on-Derivaten. Monatsh. Chem. 1973, 104, 1593–1598.10.1007/BF00909645Search in Google Scholar
©2016 Walter de Gruyter GmbH, Berlin/Boston
This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Articles in the same Issue
- Frontmatter
- Research Articles
- Pyrimidinethione as a building block in heterocyclic synthesis: synthesis of pyrano[2,3-d]pyrimidine, chromeno[2,3-d]pyrimidine, pyrido[3′,2′:5,6]pyrano[2,3-b]pyridine, and pyrimido[5′,4′:5,6]pyrano[2,3-d]pyrimidine derivatives
- C1-Substituted N-tert-butoxycarbonyl-5-syn-tert-butyldimethylsilyloxymethyl-2-azabicyclo[2.1.1]hexanes as conformationally constrained β-amino acid precursors
- Synthesis and characterization of 1,3,4-thiadiazole-2,5-dithio crown ethers
- Oxidative reaction of 2-aminopyridine-3-sulfonyl chlorides with tertiary amines
- New 8-substituted BODIPY-based chromophores: synthesis, optical and electrochemical properties
- Heterocyclization of 5,6-disubstituted 3-alkenyl-2-thioxothieno[2,3-d]pyrimidin-4-one with p-alkoxyphenyltellurium trichloride
- Synthesis and biological evaluation of 4-(2′,4′-difluorobiphenyl-4-yl)-6-arylpyrimidin- 2-amine derivatives
- Synthesis and antimicrobial properties of cycloheptyl substituted benzimidazolium salts and their silver(I) carbene complexes
- Solvent-free microwave-assisted synthesis and biological evaluation of 2,2-dimethylchroman-4-one based benzofurans
Articles in the same Issue
- Frontmatter
- Research Articles
- Pyrimidinethione as a building block in heterocyclic synthesis: synthesis of pyrano[2,3-d]pyrimidine, chromeno[2,3-d]pyrimidine, pyrido[3′,2′:5,6]pyrano[2,3-b]pyridine, and pyrimido[5′,4′:5,6]pyrano[2,3-d]pyrimidine derivatives
- C1-Substituted N-tert-butoxycarbonyl-5-syn-tert-butyldimethylsilyloxymethyl-2-azabicyclo[2.1.1]hexanes as conformationally constrained β-amino acid precursors
- Synthesis and characterization of 1,3,4-thiadiazole-2,5-dithio crown ethers
- Oxidative reaction of 2-aminopyridine-3-sulfonyl chlorides with tertiary amines
- New 8-substituted BODIPY-based chromophores: synthesis, optical and electrochemical properties
- Heterocyclization of 5,6-disubstituted 3-alkenyl-2-thioxothieno[2,3-d]pyrimidin-4-one with p-alkoxyphenyltellurium trichloride
- Synthesis and biological evaluation of 4-(2′,4′-difluorobiphenyl-4-yl)-6-arylpyrimidin- 2-amine derivatives
- Synthesis and antimicrobial properties of cycloheptyl substituted benzimidazolium salts and their silver(I) carbene complexes
- Solvent-free microwave-assisted synthesis and biological evaluation of 2,2-dimethylchroman-4-one based benzofurans