Abstract
In this work, we establish convergence results in variable exponent Sobolev spaces
References
[1] B. Aharrouch, J. Bennouna and B. El Hamdaoui, Existence of weak and renormalized solutions of degenerated elliptic equation, Afr. Mat. 30 (2019), no. 5–6, 755–776. 10.1007/s13370-019-00682-3Search in Google Scholar
[2]
B. Aharrouch, M. Boukhrij and J. Bennouna,
Existence of solutions for a class of degenerate elliptic equations in
[3] C. Bardaro, G. Vinti, P. L. Butzer and R. L. Stens, Kantorovich-type generalized sampling series in the setting of Orlicz spaces, Sampl. Theory Signal Image Process. 6 (2007), no. 1, 29–52. 10.1007/BF03549462Search in Google Scholar
[4] A. Benali and B. Jaouad, Existence and regularity results for nonlinear and nonhomogeneous elliptic equation, J. Elliptic Parabol. Equ. 7 (2021), no. 2, 961–975. 10.1007/s41808-021-00121-0Search in Google Scholar
[5] M. Cantarini, D. Costarelli and G. Vinti, Approximation of differentiable and not differentiable signals by the first derivative of sampling Kantorovich operators, J. Math. Anal. Appl. 509 (2022), no. 1, Article ID 125913. 10.1016/j.jmaa.2021.125913Search in Google Scholar
[6] D. Costarelli and R. Spigler, Convergence of a family of neural network operators of the Kantorovich type, J. Approx. Theory 185 (2014), 80–90. 10.1016/j.jat.2014.06.004Search in Google Scholar
[7] D. Costarelli and G. Vinti, Convergence for a family of neural network operators in Orlicz spaces, Math. Nachr. 290 (2017), no. 2–3, 226–235. 10.1002/mana.201600006Search in Google Scholar
[8] L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math. 2017, Springer, Heidelberg, 2011. 10.1007/978-3-642-18363-8Search in Google Scholar
[9]
D. E. Edmunds, J. Lang and A. Nekvinda,
On
[10]
X. L. Fan and D. Zhao,
On the generalised Orlicz–Sobolev Space
[11]
O. Kováčik and J. Rákosník,
On spaces
[12] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, Berlin, 1983. 10.1007/BFb0072210Search in Google Scholar
[13] J. Musielak and W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49–65. 10.4064/sm-18-1-49-65Search in Google Scholar
[14] H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen, Tokyo, 1950. Search in Google Scholar
[15]
D. Zhao, W. J. Qiang and X. L. Fan,
On generalized Orlicz spaces
© 2025 Walter de Gruyter GmbH, Berlin/Boston