Home Mathematics Generalization of some regularity criteria for 3D Boussinesq equations in homogeneous Besov and Triebel–Lizorkin spaces
Article
Licensed
Unlicensed Requires Authentication

Generalization of some regularity criteria for 3D Boussinesq equations in homogeneous Besov and Triebel–Lizorkin spaces

  • Mohamed Benallia EMAIL logo
Published/Copyright: October 28, 2025
Become an author with De Gruyter Brill

Abstract

In this paper, we generalize some regularity criteria for weak solutions of three-dimensional (3D) Boussinesq equations in homogeneous Besov spaces B ˙ ( 3 ) p , q s and homogeneous Triebel–Lizorkin spaces F ˙ ( 3 ) p , q s . We also deduce them for the homogeneous Sobolev spaces W ˙ p m ( 3 ) in a certain sense. We show that the weak solution ( ω , ϕ ) is regular on ] 0 , T ] for all T > 0 if the velocity ω satisfies

ω L β ( 0 , T ; B ˙ ( 3 ) p , q s ) , ω L β ( 0 , T ; F ˙ ( 3 ) p , q s ) , and ω L β ( 0 , T ; W ˙ p m ( 3 ) ) ,

under some conditions on the parameters s, p, q and m.

MSC 2020: 35Q35; 35B65; 76D03

Acknowledgements

The author would like to thank the referee for their valuable comments and suggestions.

References

[1] A. M. Alghamdi, S. Gala and M. A. Ragusa, A regularity criterion of weak solutions to the 3D Boussinesq equations, AIMS Math. 2 (2017), no. 3, 451–457. 10.3934/Math.2017.2.451Search in Google Scholar

[2] A. Barbagallo, S. Gala, M. A. Ragusa and M. Théra, On the regularity of weak solutions of the Boussinesq equations in Besov spaces, Vietnam J. Math. 49 (2021), no. 3, 637–649. 10.1007/s10013-020-00420-4Search in Google Scholar

[3] G. Bourdaud, Ce qu’il faut savoir sur les espaces de Besov, Preprint, Université Paris, 2009. Search in Google Scholar

[4] G. Bourdaud, M. Moussai and W. Sickel, Composition operators on Lizorkin–Triebel spaces, J. Funct. Anal. 259 (2010), no. 5, 1098–1128. 10.1016/j.jfa.2010.04.008Search in Google Scholar

[5] G. Bourdaud, M. Moussai and W. Sickel, Composition operators acting on Besov spaces on the real line, Ann. Mat. Pura Appl. (4) 193 (2014), no. 5, 1519–1554. 10.1007/s10231-013-0342-xSearch in Google Scholar

[6] J. Fan and T. Ozawa, Regularity criteria for the 3D density-dependent Boussinesq equations, Nonlinearity 22 (2009), no. 3, 553–568. 10.1088/0951-7715/22/3/003Search in Google Scholar

[7] S. Gala and M. A. Ragusa, A remark on the Beale–Kato–Majda criterion for the 3D MHD equations with zero magnetic diffusivity, AIP Conf. Proc. 1738 (2016), Article ID 480115. 10.1063/1.4952351Search in Google Scholar

[8] S. Gala and M. A. Ragusa, A regularity criterion of weak solutions to the 3D Boussinesq equations, Bull. Braz. Math. Soc. (N. S.) 51 (2020), no. 2, 513–525. 10.1007/s00574-019-00162-zSearch in Google Scholar

[9] J. Geng and J. Fan, A note on regularity criterion for the 3D Boussinesq system with zero thermal conductivity, Appl. Math. Lett. 25 (2012), no. 1, 63–66. 10.1016/j.aml.2011.07.008Search in Google Scholar

[10] N. Ishimura and H. Morimoto, Remarks on the blow-up criterion for the 3D-Boussinesq equations, Math. Models Methods Appl. Sci. 9 (1999), no. 9, 1323–1332. 10.1142/S0218202599000580Search in Google Scholar

[11] B. Jawerth, Some observations on Besov and Lizorkin–Triebel spaces, Math. Scand. 40 (1977), no. 1, 94–104. 10.7146/math.scand.a-11678Search in Google Scholar

[12] H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z. 242 (2002), no. 2, 251–278. 10.1007/s002090100332Search in Google Scholar

[13] A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lect. Notes Math. 9, New York University, New York, 2003. 10.1090/cln/009Search in Google Scholar

[14] M. Moussai, Realizations of homogeneous Besov and Triebel–Lizorkin spaces and an application to pointwise multipliers, Anal. Appl. (Singap.) 13 (2015), no. 2, 149–183. 10.1142/S0219530514500250Search in Google Scholar

[15] T. T. Ngoc and P. T. Xuan, On pseudo almost periodic solutions for Boussinesq systems on real hyperbolic manifolds, Filomat 39 (2025), no. 6, 1883–1894. 10.2298/FIL2506883NSearch in Google Scholar

[16] Y. Pandir and Y. Gurefe, A new version of the generalized F-expansion method for the fractional Biswas–Arshed equation and Boussinesq equation with the beta-derivative, J. Funct. Spaces 2023 (2023), Article ID 1980382. 10.1155/2023/1980382Search in Google Scholar

[17] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Ser. 1, Duke University, Durham, 1976. Search in Google Scholar

[18] H. Qiu, Y. Du and Z. Yao, Blow-up criteria for 3D Boussinesq equations in the multiplier space, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), no. 4, 1820–1824. 10.1016/j.cnsns.2010.08.036Search in Google Scholar

[19] E. A. Spiegel and G. Veronis, On the Boussinesq approximation for a compressible fluid, Astrophys. J. 131 (1960), 442–447. 10.1086/146849Search in Google Scholar

[20] H. Triebel, Theory of Function Spaces, Monogr. Math. 78, Birkhäuser, Basel, 1983. 10.1007/978-3-0346-0416-1Search in Google Scholar

[21] Z. Ye, Regularity criteria for 3D Boussinesq equations with zero thermal diffusion, Electron. J. Differential Equations 2015 (2015), no. 97, 1–7. Search in Google Scholar

[22] Z. Zhang, Some regularity criteria for the 3D Boussinesq equations in the class L 2 ( 0 , T ; B ˙ , - 1 ) , ISRN Appl. Math. 2014 (2014), Article ID 564758. 10.1155/2014/564758Search in Google Scholar

Received: 2025-07-06
Revised: 2025-07-29
Accepted: 2025-08-05
Published Online: 2025-10-28

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2025-2081/pdf
Scroll to top button