Abstract
The present paper introduces the notions of strong
References
[1] S. Baron and U. Stadtmüller, Tauberian theorems for power series methods applied to double sequences, J. Math. Anal. Appl. 211 (1997), no. 2, 574–589. 10.1006/jmaa.1997.5473Search in Google Scholar
[2] C. Belen, M. Yıldırım and C. Sümbül, On statistical and strong convergence with respect to a modulus function and a power series method, Filomat 34 (2020), no. 12, 3981–3993. 10.2298/FIL2012981BSearch in Google Scholar
[3] S. Çınar and S. Yıldız, P-statistical summation process of sequences of convolution operators, Indian J. Pure Appl. Math. 53 (2022), no. 3, 648–659. 10.1007/s13226-021-00156-ySearch in Google Scholar
[4] J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32 (1989), no. 2, 194–198. 10.4153/CMB-1989-029-3Search in Google Scholar
[5] K. Demirci, Strong A-summability and A-statistical convergence, Indian J. Pure Appl. Math. 27 (1996), no. 6, 589–593. Search in Google Scholar
[6] K. Demirci, F. Dirik and S. Yıldız, Approximation via equi-statistical convergence in the sense of power series method, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 116 (2022), no. 2, Paper No. 65. 10.1007/s13398-021-01191-4Search in Google Scholar
[7] M. K. Khan and C. Orhan, Matrix characterization of A-statistical convergence, J. Math. Anal. Appl. 335 (2007), no. 1, 406–417. 10.1016/j.jmaa.2007.01.084Search in Google Scholar
[8] M. K. Khan and C. Orhan, Characterizations of strong and statistical convergences, Publ. Math. Debrecen 76 (2010), no. 1–2, 77–88. 10.5486/PMD.2010.4346Search in Google Scholar
[9] M. A. Krasnosel’skiÄ and Ja. B. RutickiÄ, Convex Functions and Orlicz Spaces, P. Noordhoff, Groningen, 1961. Search in Google Scholar
[10] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc. 100 (1986), no. 1, 161–166. 10.1017/S0305004100065968Search in Google Scholar
[11] F. Móricz, Statistical convergence of multiple sequences, Arch. Math. (Basel) 81 (2003), no. 1, 82–89. 10.1007/s00013-003-0506-9Search in Google Scholar
[12] A. Pringsheim, Zur Theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900), no. 3, 289–321. 10.1007/BF01448977Search in Google Scholar
[13] N. Şahin Bayram, P-strong convergence with respect to an Orlicz function, Turkish J. Math. 46 (2022), no. 3, 832–838. 10.55730/1300-0098.3126Search in Google Scholar
[14] N. Şahin Bayram and S. Yıldız, Approximation by statistical convergence with respect to power series methods, Hacet. J. Math. Stat. 51 (2022), no. 4, 1108–1120. 10.15672/hujms.1022072Search in Google Scholar
[15] D. Söylemez and M. Ünver, Rates of power series statistical convergence of positive linear operators and power series statistical convergence of q-Meyer–Konig and Zeller operators, Lobachevskii J. Math. 42 (2021), no. 2, 426–434. 10.1134/S1995080221020189Search in Google Scholar
[16] H. Uluçay, M. Ünver and D. Söylemez, Some Korovkin type approximation applications of power series methods, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 117 (2023), no. 1, Paper No. 24. 10.1007/s13398-022-01360-zSearch in Google Scholar
[17] M. Ünver, Abel transforms of positive linear operators, AIP Conf. Proc. 1558 (2013), 1148–1151. 10.1063/1.4825711Search in Google Scholar
[18] M. Ünver, Characterization of multidimensional A-strong convergence, Studia Sci. Math. Hungar. 50 (2013), no. 1, 17–25. 10.1556/sscmath.50.2013.1.1229Search in Google Scholar
[19] M. Ünver, Abel summability in topological spaces, Monatsh. Math. 178 (2015), no. 4, 633–643. 10.1007/s00605-014-0717-0Search in Google Scholar
[20] M. Ünver and C. Orhan, Statistical convergence with respect to power series methods and applications to approximation theory, Numer. Funct. Anal. Optim. 40 (2019), no. 5, 535–547. 10.1080/01630563.2018.1561467Search in Google Scholar
[21] S. Yıldız and K. Demirci, On power series statistical convergence and new uniform integrability of double sequences, Appl. Math. J. Chinese Univ. Ser. B 39 (2024), no. 3, 519–532. 10.1007/s11766-024-5119-zSearch in Google Scholar
[22]
S. Yıldız, K. Demirci and F. Dirik,
Korovkin theory via
© 2025 Walter de Gruyter GmbH, Berlin/Boston