Home Mathematics On power series strong and statistical convergences for double sequences via Orlicz functions
Article
Licensed
Unlicensed Requires Authentication

On power series strong and statistical convergences for double sequences via Orlicz functions

  • Nilay Şahin Bayram ORCID logo EMAIL logo and Sevda Yıldız ORCID logo
Published/Copyright: August 29, 2025
Become an author with De Gruyter Brill

Abstract

The present paper introduces the notions of strong P p 2 -convergence and P p 2 -statistical convergence for double sequences with respect to an Orlicz function. Based on these new notions of convergence, new double sequence spaces and some of their properties are given. Furthermore, certain inclusion relations are analyzed. Finally, we observe that, under proper choices, the analogous results can be obtained for modulus function.

References

[1] S. Baron and U. Stadtmüller, Tauberian theorems for power series methods applied to double sequences, J. Math. Anal. Appl. 211 (1997), no. 2, 574–589. 10.1006/jmaa.1997.5473Search in Google Scholar

[2] C. Belen, M. Yıldırım and C. Sümbül, On statistical and strong convergence with respect to a modulus function and a power series method, Filomat 34 (2020), no. 12, 3981–3993. 10.2298/FIL2012981BSearch in Google Scholar

[3] S. Çınar and S. Yıldız, P-statistical summation process of sequences of convolution operators, Indian J. Pure Appl. Math. 53 (2022), no. 3, 648–659. 10.1007/s13226-021-00156-ySearch in Google Scholar

[4] J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32 (1989), no. 2, 194–198. 10.4153/CMB-1989-029-3Search in Google Scholar

[5] K. Demirci, Strong A-summability and A-statistical convergence, Indian J. Pure Appl. Math. 27 (1996), no. 6, 589–593. Search in Google Scholar

[6] K. Demirci, F. Dirik and S. Yıldız, Approximation via equi-statistical convergence in the sense of power series method, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 116 (2022), no. 2, Paper No. 65. 10.1007/s13398-021-01191-4Search in Google Scholar

[7] M. K. Khan and C. Orhan, Matrix characterization of A-statistical convergence, J. Math. Anal. Appl. 335 (2007), no. 1, 406–417. 10.1016/j.jmaa.2007.01.084Search in Google Scholar

[8] M. K. Khan and C. Orhan, Characterizations of strong and statistical convergences, Publ. Math. Debrecen 76 (2010), no. 1–2, 77–88. 10.5486/PMD.2010.4346Search in Google Scholar

[9] M. A. Krasnosel’skiÄ­ and Ja. B. RutickiÄ­, Convex Functions and Orlicz Spaces, P. Noordhoff, Groningen, 1961. Search in Google Scholar

[10] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc. 100 (1986), no. 1, 161–166. 10.1017/S0305004100065968Search in Google Scholar

[11] F. Móricz, Statistical convergence of multiple sequences, Arch. Math. (Basel) 81 (2003), no. 1, 82–89. 10.1007/s00013-003-0506-9Search in Google Scholar

[12] A. Pringsheim, Zur Theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900), no. 3, 289–321. 10.1007/BF01448977Search in Google Scholar

[13] N. Şahin Bayram, P-strong convergence with respect to an Orlicz function, Turkish J. Math. 46 (2022), no. 3, 832–838. 10.55730/1300-0098.3126Search in Google Scholar

[14] N. Şahin Bayram and S. Yıldız, Approximation by statistical convergence with respect to power series methods, Hacet. J. Math. Stat. 51 (2022), no. 4, 1108–1120. 10.15672/hujms.1022072Search in Google Scholar

[15] D. Söylemez and M. Ünver, Rates of power series statistical convergence of positive linear operators and power series statistical convergence of q-Meyer–Konig and Zeller operators, Lobachevskii J. Math. 42 (2021), no. 2, 426–434. 10.1134/S1995080221020189Search in Google Scholar

[16] H. Uluçay, M. Ünver and D. Söylemez, Some Korovkin type approximation applications of power series methods, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 117 (2023), no. 1, Paper No. 24. 10.1007/s13398-022-01360-zSearch in Google Scholar

[17] M. Ünver, Abel transforms of positive linear operators, AIP Conf. Proc. 1558 (2013), 1148–1151. 10.1063/1.4825711Search in Google Scholar

[18] M. Ünver, Characterization of multidimensional A-strong convergence, Studia Sci. Math. Hungar. 50 (2013), no. 1, 17–25. 10.1556/sscmath.50.2013.1.1229Search in Google Scholar

[19] M. Ünver, Abel summability in topological spaces, Monatsh. Math. 178 (2015), no. 4, 633–643. 10.1007/s00605-014-0717-0Search in Google Scholar

[20] M. Ünver and C. Orhan, Statistical convergence with respect to power series methods and applications to approximation theory, Numer. Funct. Anal. Optim. 40 (2019), no. 5, 535–547. 10.1080/01630563.2018.1561467Search in Google Scholar

[21] S. Yıldız and K. Demirci, On power series statistical convergence and new uniform integrability of double sequences, Appl. Math. J. Chinese Univ. Ser. B 39 (2024), no. 3, 519–532. 10.1007/s11766-024-5119-zSearch in Google Scholar

[22] S. Yıldız, K. Demirci and F. Dirik, Korovkin theory via P p -statistical relative modular convergence for double sequences, Rend. Circ. Mat. Palermo (2) 72 (2023), no. 2, 1125–1141. 10.1007/s12215-021-00681-zSearch in Google Scholar

Received: 2024-05-14
Revised: 2025-04-22
Accepted: 2025-05-20
Published Online: 2025-08-29

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2025-2073/html
Scroll to top button