Abstract
In this paper, the Duhamel product is used to endow analytic tent spaces with a Banach algebra structure. The Hadamard–Bergman convolution on these spaces is also described. Additionally, the Deddens algebras of composition operators are studied.
Funding statement: The authors are supported by the GuangDong Basic and Applied Basic Research Foundation (Grant No. 2023A1515010614).
References
[1] R. R. Coifman, Y. Meyer and E. M. Stein, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal. 62 (1985), no. 2, 304–335. 10.1016/0022-1236(85)90007-2Suche in Google Scholar
[2] J. A. Deddens, Another description of nest algebras, Hilbert Space Operators, Lecture Notes in Math. 693, Springer, Berlin, (1978), 77–86. 10.1007/BFb0064662Suche in Google Scholar
[3] P. Gérard and A. Pushnitski, Unbounded Hankel operators and the flow of the cubic Szegő equation, Invent. Math. 232 (2023), no. 3, 995–1026. 10.1007/s00222-022-01176-zSuche in Google Scholar
[4] H. Guediri, M. T. Garayev and H. Sadraoui, The Bergman space as a Banach algebra, New York J. Math. 21 (2015), 339–350. Suche in Google Scholar
[5] M. T. Karaev and H. S. Mustafayev, On some properties of Deddens algebras, Rocky Mountain J. Math. 33 (2003), no. 3, 915–926. 10.1216/rmjm/1181069935Suche in Google Scholar
[6]
M. T. Karaev and S. Saltan,
A Banach algebra structure for the Wiener algebra
[7] B. Karapetrović and J. Mashreghi, Hadamard convolution and area integral means in Bergman spaces, Results Math. 75 (2020), no. 2, Paper No. 70. 10.1007/s00025-020-01196-2Suche in Google Scholar
[8] A. Karapetyants and S. Samko, Hadamard–Bergman convolution operators, Complex Anal. Oper. Theory 14 (2020), no. 8, Paper No. 77. 10.1007/s11785-020-01035-wSuche in Google Scholar
[9] K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc. 347 (1995), no. 7, 2679–2687. 10.1090/S0002-9947-1995-1273508-XSuche in Google Scholar
[10]
J. Pau,
Integration operators between Hardy spaces on the unit ball of
[11] S. Petrovic, Deddens algebras and shift, Complex Anal. Oper. Theory 5 (2011), no. 1, 253–259. 10.1007/s11785-009-0034-0Suche in Google Scholar
[12] S. Petrovic, Spectral radius algebras, Deddens algebras, and weighted shifts, Bull. Lond. Math. Soc. 43 (2011), no. 3, 513–522. 10.1112/blms/bdq118Suche in Google Scholar
[13] S. Petrovic and D. Sievewright, Compact composition operators and Deddens algebras, Complex Anal. Oper. Theory 12 (2018), no. 8, 1889–1901. 10.1007/s11785-017-0689-xSuche in Google Scholar
[14] D. Sievewright, Deddens algebras for weighted shifts, Houston J. Math. 41 (2015), no. 3, 785–814. Suche in Google Scholar
[15] M. F. Wang and L. Zhou, Embedding derivatives and integration operators on Hardy type tent spaces, Acta Math. Sin. (Engl. Ser.) 38 (2022), no. 6, 1069–1093. 10.1007/s10114-022-0405-2Suche in Google Scholar
[16] N. M. Wigley, The Duhamel product of analytic functions, Duke Math. J. 41 (1974), 211–217. 10.1215/S0012-7094-74-04123-4Suche in Google Scholar
[17]
N. M. Wigley,
A Banach algebra structure for
[18] H. Xie, J. Liu and S. Ponnusamy, Volterra-type operators on the minimal Möbius-invariant space, Canad. Math. Bull. 66 (2023), no. 2, 509–524. 10.4153/S0008439522000376Suche in Google Scholar
[19] R. Yang, L. Hu and S. Li, Generalized integration operators on analytic tent spaces, Mediterr. J. Math. 21 (2024), no. 6, Paper No. 177. 10.1007/s00009-024-02720-2Suche in Google Scholar
[20] Z. Zhang, J. Liu and S. Ponnusamy, Banach algebra structure in Besov spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 119 (2025), no. 1, Paper No. 21. 10.1007/s13398-024-01689-7Suche in Google Scholar
[21]
Z. Zhang, J. Liu and J. Zhou,
Banach algebra structure in
[22] K. Zhu, Operator Theory in Function Spaces, 2nd ed., Math. Surveys Monogr. 138, American Mathematical Society, Providence, 2007. 10.1090/surv/138Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston