Home Mathematics Weighted estimates for commutators of multilinear singular integral operators in Dunkl setting
Article
Licensed
Unlicensed Requires Authentication

Weighted estimates for commutators of multilinear singular integral operators in Dunkl setting

  • Yan Wang EMAIL logo , Fanghui Liao and Zongguang Liu
Published/Copyright: June 28, 2025
Become an author with De Gruyter Brill

Abstract

In this paper, we study multilinear Dunkl–Calderón–Zygmund operators, focusing on both the establishment of endpoint estimates for the operators and the boundedness of two types of commutators generated by these operators and BMO d functions, as demonstrated through sharp maximal function estimates.

Acknowledgements

We are grateful to the reviewer for the insightful comments and constructive suggestions.

References

[1] B. Amri and M. Sifi, Riesz transforms for Dunkl transform, Ann. Math. Blaise Pascal 19 (2012), no. 1, 247–262. 10.5802/ambp.312Search in Google Scholar

[2] B. Amri and M. Sifi, Singular integral operators in Dunkl setting, J. Lie Theory 22 (2012), no. 3, 723–739. Search in Google Scholar

[3] W. Chen and E. Sawyer, Endpoint estimates for commutators of singular integrals on spaces of homogeneous type, J. Math. Anal. Appl. 282 (2003), no. 2, 553–566. 10.1016/S0022-247X(03)00172-0Search in Google Scholar

[4] R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2) 103 (1976), no. 3, 611–635. 10.2307/1970954Search in Google Scholar

[5] R. R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971. 10.1007/BFb0058946Search in Google Scholar

[6] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569–645. 10.1090/S0002-9904-1977-14325-5Search in Google Scholar

[7] M. F. E. de Jeu, The Dunkl transform, Invent. Math. 113 (1993), no. 1, 147–162. 10.1007/BF01244305Search in Google Scholar

[8] C. F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), no. 1, 167–183. 10.1090/S0002-9947-1989-0951883-8Search in Google Scholar

[9] C. F. Dunkl, Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991), no. 6, 1213–1227. 10.4153/CJM-1991-069-8Search in Google Scholar

[10] C. F. Dunkl, Hankel transforms associated to finite reflection groups, Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa 1991), Contemp. Math. 138, American Mathematical Society, Providence (1992), 123–138. 10.1090/conm/138/1199124Search in Google Scholar

[11] C. F. Dunkl and Y. Xu, Orthogonal Polynomials of Several Variables, Encyclopedia Math. Appl. 81, Cambridge University, Cambridge, 2001. 10.1017/CBO9780511565717Search in Google Scholar

[12] X. T. Duong, R. Gong, M.-J. S. Kuffner, J. Li, B. D. Wick and D. Yang, Two weight commutators on spaces of homogeneous type and applications, J. Geom. Anal. 31 (2021), no. 1, 980–1038. 10.1007/s12220-019-00308-xSearch in Google Scholar

[13] J. Dziubański and A. Hejna, Hörmander’s multiplier theorem for the Dunkl transform, J. Funct. Anal. 277 (2019), no. 7, 2133–2159. 10.1016/j.jfa.2019.03.002Search in Google Scholar

[14] J. Dziubański and A. Hejna, Singular integrals in the rational Dunkl setting, Rev. Mat. Complut. 35 (2022), no. 3, 711–737. 10.1007/s13163-021-00402-1Search in Google Scholar

[15] J. Dziubański and A. Hejna, A note on commutators of singular integrals with BMO and VMO functions in the Dunkl setting, Math. Nachr. 297 (2024), no. 2, 629–643. 10.1002/mana.202300106Search in Google Scholar

[16] I. Genebashvili, A. Gogatishvili, V. Kokilashvili and M. Krbec, Weight Theory for Integral Transforms on Spaces of Homogeneous Type, Pitman Monogr. Surv. Pure Appl. Math. 92, Longman, Harlow, 1998. Search in Google Scholar

[17] L. Grafakos, L. Liu, D. Maldonado and D. Yang, Multilinear analysis on metric spaces, Dissertationes Math. 497 (2014), 121. 10.4064/dm497-0-1Search in Google Scholar

[18] V. Guliyev, Y. Mammadov and F. Muslumova, Characterization of fractional maximal operator and its commutators on Orlicz spaces in the Dunkl setting, J. Pseudo-Differ. Oper. Appl. 11 (2020), no. 4, 1699–1717. 10.1007/s11868-020-00364-wSearch in Google Scholar

[19] Y. Han, M.-Y. Lee, J. Li and B. D. Wick, Lipschitz and Triebel–Lizorkin spaces, commutators in Dunkl setting, Nonlinear Anal. 237 (2023), Article ID 113365. 10.1016/j.na.2023.113365Search in Google Scholar

[20] Y. Han, M.-Y. Lee, J. Li and B. D. Wick, Riesz transforms and commutators in the Dunkl setting, Anal. Math. Phys. 14 (2024), no. 3, Paper No. 46. 10.1007/s13324-024-00911-4Search in Google Scholar

[21] S. Hassani, S. Mustapha and M. Sifi, Riesz potentials and fractional maximal function for the Dunkl transform, J. Lie Theory 19 (2009), no. 4, 725–734. Search in Google Scholar

[22] J. Jiu and Z. Li, The dual of the Hardy space associated with the Dunkl operators, Adv. Math. 412 (2023), Article ID 108810. 10.1016/j.aim.2022.108810Search in Google Scholar

[23] A. K. Lerner, S. Ombrosi, C. Pérez, R. H. Torres and R. Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón–Zygmund theory, Adv. Math. 220 (2009), no. 4, 1222–1264. 10.1016/j.aim.2008.10.014Search in Google Scholar

[24] G. Lu and P. Zhang, Multilinear Calderón–Zygmund operators with kernels of Dini’s type and applications, Nonlinear Anal. 107 (2014), 92–117. 10.1016/j.na.2014.05.005Search in Google Scholar

[25] S. Mukherjee and S. Parui, Weighted inequalities for multilinear fractional operators in Dunkl setting, J. Pseudo-Differ. Oper. Appl. 13 (2022), no. 3, Paper No. 34. 10.1007/s11868-022-00464-9Search in Google Scholar

[26] S. Mukherjee and S. Parui, Weighted bilinear multiplier theorems in Dunkl setting via singular integrals, Forum Math. 37 (2025), no. 2, 663–692. 10.1515/forum-2023-0398Search in Google Scholar

[27] C. Pérez, Endpoint estimates for commutators of singular integral operators, J. Funct. Anal. 128 (1995), no. 1, 163–185. 10.1006/jfan.1995.1027Search in Google Scholar

[28] C. Pérez, G. Pradolini, R. H. Torres and R. Trujillo-González, End-point estimates for iterated commutators of multilinear singular integrals, Bull. Lond. Math. Soc. 46 (2014), no. 1, 26–42. 10.1112/blms/bdt065Search in Google Scholar

[29] C. Pérez and R. H. Torres, Sharp maximal function estimates for multilinear singular integrals, Harmonic Analysis at Mount Holyoke (South Hadley 2001), Contemp. Math. 320, American Mathematical Society, Providence (2003), 323–331. 10.1090/conm/320/05615Search in Google Scholar

[30] M. Rösler, Dunkl operators: Theory and applications, Orthogonal Polynomials and Special Functions (Leuven 2002), Lecture Notes in Math. 1817, Springer, Berlin (2003), 93–135. 10.1007/3-540-44945-0_3Search in Google Scholar

[31] F. Soltani, L p -Fourier multipliers for the Dunkl operator on the real line, J. Funct. Anal. 209 (2004), no. 1, 16–35. 10.1016/j.jfa.2003.11.009Search in Google Scholar

[32] F. Soltani, Littlewood–Paley operators associated with the Dunkl operator on , J. Funct. Anal. 221 (2005), no. 1, 205–225. 10.1016/j.jfa.2004.10.001Search in Google Scholar

[33] J. Sun and P. Zhang, Commutators of multilinear Calderón–Zygmund operators with Dini type kernels on some function spaces, J. Nonlinear Sci. Appl. 10 (2017), no. 9, 5002–5019. 10.22436/jnsa.010.09.38Search in Google Scholar

[34] C. Tan, Y. Han, Y. Han, M.-Y. Lee and J. Li, Singular integral operators, T1 theorem, Littlewood–Paley theory and hardy spaces in Dunkl setting, preprint (2022), https://arxiv.org/abs/2204.01886. Search in Google Scholar

[35] C. Tan, Y. Han and J. Li, Maximal operator, Cotlar’s inequality and pointwise convergence for singular integral operators in Dunkl setting, J. Geom. Anal. 33 (2023), no. 5, Paper No. 164. 10.1007/s12220-023-01239-4Search in Google Scholar

[36] S. Thangavelu and Y. Xu, Convolution operator and maximal function for the Dunkl transform, J. Anal. Math. 97 (2005), 25–55. 10.1007/BF02807401Search in Google Scholar

[37] S. Thangavelu and Y. Xu, Riesz transform and Riesz potentials for Dunkl transform, J. Comput. Appl. Math. 199 (2007), no. 1, 181–195. 10.1016/j.cam.2005.02.022Search in Google Scholar

[38] Y. Zhao, H. Lin and Y. Meng, Weighted estimates for iterated commutators of multilinear Calderón–Zygmund operators on non-homogeneous metric measure spaces, Sci. China Math. 64 (2021), no. 3, 519–546. 10.1007/s11425-018-9471-7Search in Google Scholar

Received: 2024-11-23
Revised: 2025-02-19
Accepted: 2025-04-01
Published Online: 2025-06-28

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2025-2055/pdf
Scroll to top button