Home Mathematics A q-analog of Schröder sequence spaces and compact operators
Article
Licensed
Unlicensed Requires Authentication

A q-analog of Schröder sequence spaces and compact operators

  • Muhammet Çihat Dağli , Taja Yaying and Mohammed Mursaleen ORCID logo EMAIL logo
Published/Copyright: July 9, 2025
Become an author with De Gruyter Brill

Abstract

We introduce q-analog of Schröder matrix and discuss its domains in the spaces c and c 0 . Also, the Schauder basis and α-, β-, γ-duals are given and certain classes of matrix mappings are characterized on these spaces. Moreover, the characterizations of certain compact operators are established via Hausdorff measure of noncompactness.

References

[1] H. Aktuğlu and Ş. Bekar, q-Cesáro matrix and q-statistical convergence, J. Comput. Appl. Math. 235 (2011), no. 16, 4717–4723. 10.1016/j.cam.2010.08.018Search in Google Scholar

[2] A. Alotaibi, T. Yaying and S. A. Mohiuddine, Sequence spaces and spectrum of q-difference operator of second order, Symmetry 14 (2022), no. 6, Paper No. 1155. 10.3390/sym14061155Search in Google Scholar

[3] K. I. Atabey, M. Çınar and M. Et, q-Fibonacci sequence spaces and related matrix transformations, J. Appl. Math. Comput. 69 (2023), no. 2, 2135–2154. 10.1007/s12190-022-01825-9Search in Google Scholar

[4] M. Ayman Mursaleen, A note on matrix domains of Copson matrix of order α and compact operators, Asian-Eur. J. Math. 15 (2022), no. 7, Article ID 2250140. 10.1142/S1793557122501406Search in Google Scholar

[5] E. Barcucci, A. Del Lungo, E. Pergola and R. Pinzani, Some combinatorial interpretations of q-analogs of Schröder numbers, Ann. Comb. 3 (1999), no. 2–4, 171–190. 10.1007/BF01608782Search in Google Scholar

[6] F. Başar, Summability Theory and its Applications, Bentham Science, Oak Park, 2012. 10.2174/97816080545231120101Search in Google Scholar

[7] F. Başar and B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukraïn. Mat. Zh. 55 (2003), no. 1, 108–118; translation in Ukrainian Math. J. 55 (2003), no. 1, 136–147. Search in Google Scholar

[8] M. Basarir and E. E. Kara, On compact operators on the Riesz B m -difference sequence space, Iran. J. Sci. Technol. Trans. A Sci. 35 (2011), no. 4, 279–285. Search in Google Scholar

[9] M. Başarir and E. E. Kara, On some difference sequence spaces of weighted means and compact operators, Ann. Funct. Anal. 2 (2011), no. 2, 114–129. 10.15352/afa/1399900200Search in Google Scholar

[10] J. Bustoz and L. F. Gordillo, q-Hausdorff summability, J. Comput. Anal. Appl. 7 (2005), no. 1, 35–48. Search in Google Scholar

[11] M. C. Dağli, Matrix mappings and compact operators for Schröder sequence spaces, Turkish J. Math. 46 (2022), no. 6, 2304–2320. 10.55730/1300-0098.3270Search in Google Scholar

[12] M. C. Dağli, A novel conservative matrix arising from Schröder numbers and its properties, Linear Multilinear Algebra 71 (2023), no. 8, 1338–1351. 10.1080/03081087.2022.2061401Search in Google Scholar

[13] M. C. Dağli and T. Yaying, A study on Fibo–Pascal sequence spaces and associated matrix transformations and applications of Hausdorff measure of non-compactness, Georgian Math. J. 32 (2025), no. 1, 55–69. 10.1515/gmj-2024-2021Search in Google Scholar

[14] B. de Malafosse, The Banach algebra ( X ) , where X is a BK space andapplications, Mat. Vesnik 57 (2005), no. 1–2, 41–60. Search in Google Scholar

[15] S. Demiriz and A. Şahin, q-Cesàro sequence spaces derived by q-analogues, Adv. Math. 5 (2016), no. 2, 97–110. Search in Google Scholar

[16] M. İlkhan, A new conservative matrix derived by Catalan numbers and its matrix domain in the spaces c and c 0 , Linear Multilinear Algebra 68 (2020), no. 2, 417–434. 10.1080/03081087.2019.1635071Search in Google Scholar

[17] F. H. Jackson, On q-functions and a certain difference operator, Trans. Roy. Soc. Edinb. 46 (1908), 253–281. 10.1017/S0080456800002751Search in Google Scholar

[18] V. Kac and P. Cheung, Quantum Calculus, Universitext, Springer, New York, 2002. 10.1007/978-1-4613-0071-7Search in Google Scholar

[19] M. Kirişçi and F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl. 60 (2010), no. 5, 1299–1309. 10.1016/j.camwa.2010.06.010Search in Google Scholar

[20] R. Kumar, S. K. Sharma, A. K. Sharma and M. Musarleen, On q-Fibonacci Cesàro sequence spaces by using band matrix, Iran. J. Sci. 49 (2025), no. 1, 201–208. 10.1007/s40995-024-01706-9Search in Google Scholar

[21] E. Malkowsky and V. Rakočević, An introduction into the theory of sequence spaces and measures of noncompactness, Zb. Rad. (Beogr.) 9(17) (2000), 143–234. Search in Google Scholar

[22] S. A. Mohiuddine and B. Hazarika, Sequence Space Theory with Applications, CRC Press, New York, 2022. 10.1201/9781003178200Search in Google Scholar

[23] S. A. Mohiuddine, B. Hazarika and H. K. Nashine, Approximation Theory, Sequence Spaces and Applications, Ind. Appl. Math., Springer, Singapore, 2022. 10.1007/978-981-19-6116-8Search in Google Scholar

[24] S. A. Mohiuddine, K. Raj, M. Mursaleen and A. Alotaibi, Linear isomorphic spaces of fractional-order difference operators, Alexandria Eng. J. 60 (2021), 1155–1164. 10.1016/j.aej.2020.10.039Search in Google Scholar

[25] M. Mursaleen and F. Başar, Sequence Spaces—Topics in Modern Summability Theory, Math. Appl. Model. Eng. Social Sci., CRC Press, Boca Raton, 2020. 10.1201/9781003015116Search in Google Scholar

[26] M. Mursaleen and A. K. Noman, Applications of the Hausdorff measure of noncompactness in some sequence spaces of weighted means, Comput. Math. Appl. 60 (2010), no. 5, 1245–1258. 10.1016/j.camwa.2010.06.005Search in Google Scholar

[27] M. Mursaleen and A. K. Noman, Compactness by the Hausdorff measure of noncompactness, Nonlinear Anal. 73 (2010), no. 8, 2541–2557. 10.1016/j.na.2010.06.030Search in Google Scholar

[28] M. Mursaleen, S. Tabassum and R. Fatma, On q-statistical summability method and its properties, Iran. J. Sci. Technol. Trans. A Sci. 46 (2022), no. 2, 455–460. 10.1007/s40995-022-01285-7Search in Google Scholar

[29] K. Raj, S. A. Mohiuddine and S. Jasrotia, Characterization of summing operators in multiplier spaces of deferred Nörlund summability, Positivity 27 (2023), no. 1, Paper No. 9. 10.1007/s11117-022-00961-7Search in Google Scholar

[30] M. Stieglitz and H. Tietz, Matrixtransformationen von Folgenräumen. Eine Ergebnisübersicht, Math. Z. 154 (1977), no. 1, 1–16. 10.1007/BF01215107Search in Google Scholar

[31] T. Yaying and F. Başar, Matrix transformation and compactness on q-Catalan sequence spaces, Numer. Funct. Anal. Optim. 45 (2024), no. 4–6, 373–393. 10.1080/01630563.2024.2349003Search in Google Scholar

[32] T. Yaying, B. Hazarika, P. Baliarsingh and M. Mursaleen, Cesàro q-difference sequence spaces and spectrum of weighted q-difference operator, Bull. Iranian Math. Soc. 50 (2024), no. 2, Paper No. 23. 10.1007/s41980-024-00862-3Search in Google Scholar

[33] T. Yaying, B. Hazarika and F. Başar, On some new sequence spaces defined by q-Pascal matrix, Trans. A. Razmadze Math. Inst. 176 (2022), no. 1, 99–113. Search in Google Scholar

[34] T. Yaying, B. Hazarika and L. Mei, On the domain of q-Euler matrix in c and c 0 with its point spectra, Filomat 37 (2023), no. 2, 643–660. 10.2298/FIL2302643YSearch in Google Scholar

[35] T. Yaying, B. Hazarika and M. Mursaleen, On generalized ( p , q ) -Euler matrix and associated sequence spaces, J. Funct. Spaces 2021 (2021), Article ID 8899960. 10.1155/2021/8899960Search in Google Scholar

[36] T. Yaying, B. Hazarika and M. Mursaleen, On sequence space derived by the domain of q-Cesàro matrix in p space and the associated operator ideal, J. Math. Anal. Appl. 493 (2021), no. 1, Article ID 124453. 10.1016/j.jmaa.2020.124453Search in Google Scholar

[37] T. Yaying, M. İlkhan Kara, B. Hazarika and E. E. Kara, A study on q-analogue of Catalan sequence spaces, Filomat 37 (2023), no. 3, 839–850. 10.2298/FIL2303839YSearch in Google Scholar

[38] T. Yaying, E. Savaş and M. Mursaleen, A novel study on q-Fibonacci sequence spaces and their geometric properties, Iran. J. Sci. 48 (2024), no. 4, 939–951. 10.1007/s40995-024-01644-6Search in Google Scholar

Received: 2024-12-11
Revised: 2025-02-26
Accepted: 2025-03-14
Published Online: 2025-07-09

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2025-2054/pdf
Scroll to top button