Home Mathematics Approximation of Kantorovich-type max-product q-Bernstein operators
Article
Licensed
Unlicensed Requires Authentication

Approximation of Kantorovich-type max-product q-Bernstein operators

  • Sezin Cit ORCID logo EMAIL logo , Carmen Violeta Muraru ORCID logo and Ogün Dogru ORCID logo
Published/Copyright: May 29, 2025
Become an author with De Gruyter Brill

Abstract

In this article, we show that the approximation order of Kantorovich-type max-product Bernstein operators can be improved. We are able to obtain a better approximation order for q-Bernstein operators. In addition, we present a Kantorovich-type generalization of max-product operators based on q-integers. In particular, we find the approximation order (via the classical modulus of continuity) of the Kantorovich-type max-product q-Bernstein operator.


Dedicated to Professor Octavian Agratini on the occasion of his 65-th birthday, with high esteem


Acknowledgements

The authors sincerely thank the referees for their valuable comments and helpful suggestions and the editors for their efforts in managing the review process.

References

[1] O. Agratini, On the rate of convergence of a positive approximation process, Nihonkai Math. J. 11 (2000), no. 1, 47–56. Search in Google Scholar

[2] O. Agratini, An approximation process of Kantorovich type, Math. Notes (Miskolc) 2 (2001), no. 1, 3–10. 10.18514/MMN.2001.31Search in Google Scholar

[3] O. Agratini, On certain q-analogues of the Bernstein operators, Carpathian J. Math. 24 (2008), no. 3, 281–286. Search in Google Scholar

[4] O. Agratini, Kantorovich-type operators preserving affine functions, Hacet. J. Math. Stat. 45 (2016), no. 6, 1657–1663. 10.15672/HJMS.20164515994Search in Google Scholar

[5] O. Agratini and O. Dogru, Kantorovich-type operators associated with a variant of Jain operators, Stud. Univ. Babeş-Bolyai Math. 66 (2021), no. 2, 279–288. 10.24193/subbmath.2021.2.04Search in Google Scholar

[6] O. Agratini and G. Nowak, On a generalization of Bleimann, Butzer and Hahn operators based on q-integers, Math. Comput. Modelling 53 (2011), no. 5–6, 699–706. 10.1016/j.mcm.2010.10.006Search in Google Scholar

[7] A. Aral, V. Gupta and R. P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, New York, 2013. 10.1007/978-1-4614-6946-9Search in Google Scholar

[8] B. Bede, L. Coroianu and S. G. Gal, Approximation and shape preserving properties of the Bernstein operator of max-product kind, Int. J. Math. Math. Sci. 2009 (2009), Article ID 590589. 10.1155/2009/590589Search in Google Scholar

[9] B. Bede, L. Coroianu and S. G. Gal, Approximation and shape preserving properties of the nonlinear Baskakov operator of max-product kind, Stud. Univ. Babeş-Bolyai Math. 55 (2010), no. 4, 193–218. Search in Google Scholar

[10] B. Bede, L. Coroianu and S. G. Gal, Approximation and shape preserving properties of the nonlinear Bleimann–Butzer–Hahn operators of max-product kind, Comment. Math. Univ. Carolin. 51 (2010), no. 3, 397–415. Search in Google Scholar

[11] B. Bede, L. Coroianu and S. G. Gal, Approximation and shape preserving properties of the nonlinear Favard–Szász–Mirakjan operator of max-product kind, Filomat 24 (2010), no. 3, 55–72. 10.2298/FIL1003055BSearch in Google Scholar

[12] B. Bede, L. Coroianu and S. G. Gal, Approximation and shape preserving properties of the nonlinear Meyer–König and Zeller operator of max-product kind, Numer. Funct. Anal. Optim. 31 (2010), no. 1–3, 232–253. 10.1080/01630561003757686Search in Google Scholar

[13] B. Bede, L. Coroianu and S. G. Gal, Approximation by Max-Product Type Operators, Springer, Cham, 2016. 10.1007/978-3-319-34189-7Search in Google Scholar

[14] B. Bede and S. G. Gal, Approximation by nonlinear Bernstein and Favard–Szász–Mirakjan operators of max-product kind, J. Concr. Appl. Math. 8 (2010), no. 2, 193–207. Search in Google Scholar

[15] B. Bede, H. Nobuhara, M. Dankova and A. Di Nola, Approximation by pseudo-linear operators, Fuzzy Sets and Systems 159 (2008), no. 7, 804–820. 10.1016/j.fss.2007.11.007Search in Google Scholar

[16] S. Çit and O. Doğru, On better approximation order for the nonlinear Bleimann–Butzer–Hahn operator of maximum product kind, Khayyam J. Math. 9 (2023), no. 2, 225–245. Search in Google Scholar

[17] S. Çit and O. Doğru, On better approximation order for the nonlinear Bernstein operator of max-product kind, Filomat 38 (2024), no. 13, 4767–4774. 10.2298/FIL2413767CSearch in Google Scholar

[18] S. Çit and O. Doğru, On better approximation order for the nonlinear Favard–Szász–Mirakjan operator of maximum product kind, Mat. Vesnik 77 (2025), no. 1, 38–48. 10.57016/MV-nkMX9624Search in Google Scholar

[19] L. Coroianu and S. G. Gal, Approximation by max-product operators of Kantorovich type, Stud. Univ. Babeş-Bolyai Math. 64 (2019), no. 2, 207–223. 10.24193/subbmath.2019.2.07Search in Google Scholar

[20] L. Coroianu, S. G. Gal, B. D. Opriş and S. Trifa, Feller’s scheme in approximation by nonlinear possibilistic integral operators, Numer. Funct. Anal. Optim. 38 (2017), no. 3, 327–343. 10.1080/01630563.2017.1279174Search in Google Scholar

[21] O. Dalmanoğlu, Approximation by Kantorovich type q-Bernstein operators, Proceedings of the 12th WSEAS International Conference on Applied Mathematics, ACM, New York (2007), 113–117. Search in Google Scholar

[22] O. Dalmanoğlu and O. Doğru, On statistical approximation properties of Kantorovich type q-Bernstein operators, Math. Comput. Modelling 52 (2010), no. 5–6, 760–771. 10.1016/j.mcm.2010.05.005Search in Google Scholar

[23] O. Duman, Nonlinear Approximation: q-Bernstein operators of max-product kind, Intelligent Mathematics II: Applied Mathematics and Approximation Theory, Adv. Intell. Syst. Comput. 441, Springer, Cham (2016), 33–56. 10.1007/978-3-319-30322-2_3Search in Google Scholar

[24] S. G. Gal, Shape-Preserving Approximation by Real and Complex Polynomials, Birkhäuser, Boston, 2008. 10.1007/978-0-8176-4703-2Search in Google Scholar

[25] T. N. T. Goodman, H. Oruç and G. M. Phillips, Convexity and generalized Bernstein polynomials, Proc. Edinburgh Math. Soc. (2) 42 (1999), no. 1, 179–190. 10.1017/S0013091500020101Search in Google Scholar

[26] W. Heping and F. Meng, The rate of convergence of q-Bernstein polynomials for 0 < q < 1 , J. Approx. Theory 136 (2005), no. 2, 151–158. 10.1016/j.jat.2005.07.001Search in Google Scholar

[27] L. V. Kantorovich, Sur certains développements suivant les polynômes de la forme de S. Bernstein, C. R. Acad. URSS I (1930), 563–568. Search in Google Scholar

[28] A. Lupaş, A q-analogue of the Bernstein operator, Seminar on Numerical and Statistical Calculus, Babeş-Bolyai University, Cluj-Napoca (1987), 85–92. Search in Google Scholar

[29] M. Örkçü and O. Doğru, q-Szász–Mirakyan–Kantorovich type operators preserving some test functions, Appl. Math. Lett. 24 (2011), no. 9, 1588–1593. 10.1016/j.aml.2011.04.001Search in Google Scholar

[30] M. Örkçü and O. Doğru, Statistical approximation of a kind of Kantorovich type q-Szász–Mirakjan operators, Nonlinear Anal. 75 (2012), no. 5, 2874–2882. 10.1016/j.na.2011.11.029Search in Google Scholar

[31] H. Oruç and G. M. Phillips, A generalization of the Bernstein polynomials, Proc. Edinburgh Math. Soc. (2) 42 (1999), no. 2, 403–413. 10.1017/S0013091500020332Search in Google Scholar

[32] G. M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math. 4 (1997), no. 1–4, 511–518. Search in Google Scholar

[33] C. Radu, Statistical approximation properties of Kantorovich operators based on q-integers, Creat. Math. Inform. 17 (2008), no. 2, 75–84. Search in Google Scholar

[34] P. M. Rajković, M. S. Stanković and S. D. Marinković, Mean value theorems in q-calculus, Mat. Vesnik 54 (2002), no. 3–4, 171–178. Search in Google Scholar

[35] J. Thomae, Beiträge zur Theorie der durch die Heinesche Reihed arstellbaren Funktionen, J. Reine Angew. Math. 70 (1869), 258–281. 10.1515/crll.1869.70.258Search in Google Scholar

Received: 2024-12-18
Revised: 2025-02-19
Accepted: 2025-02-25
Published Online: 2025-05-29

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2025-2040/pdf
Scroll to top button