Home Mathematics A Cauchy–Kowalevski theorem for ψ-bimonogenic functions
Article
Licensed
Unlicensed Requires Authentication

A Cauchy–Kowalevski theorem for ψ-bimonogenic functions

  • José Luis Serrano Ricardo and Ricardo Abreu Blaya EMAIL logo
Published/Copyright: May 29, 2025
Become an author with De Gruyter Brill

Abstract

In this paper we prove a Cauchy–Kowalevski theorem for the solutions of the system x ψ x ψ f = 0 , where x ψ stands for the Cauchy–Riemann operator, associated to the orthonormal basis ψ of m + 1 .

MSC 2020: 30G35; 30G30

References

[1] F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis, Res. Notes Math. 76, Pitman, Boston, 1982. Search in Google Scholar

[2] R. E. Caflisch and J. S. Lowengrub, Convergence of the vortex method for vortex sheets, SIAM J. Numer. Anal. 26 (1989), no. 5, 1060–1080. 10.1137/0726059Search in Google Scholar

[3] R. E. Caflisch and O. F. Orellana, Long time existence for a slightly perturbed vortex sheet, Comm. Pure Appl. Math. 39 (1986), no. 6, 807–838. 10.1002/cpa.3160390605Search in Google Scholar

[4] A. M. García, T. Moreno García, R. Abreu Blaya and J. Bory Reyes, A Cauchy integral formula for inframonogenic functions in Clifford analysis, Adv. Appl. Clifford Algebr. 27 (2017), no. 2, 1147–1159. 10.1007/s00006-016-0745-zSearch in Google Scholar

[5] J. E. Gilbert and M. A. M. Murray, Clifford Algebras and Dirac Operators in Harmonic Analysis, Cambridge Stud. Adv. Math. 26, Cambridge University, Cambridge, 1991. 10.1017/CBO9780511611582Search in Google Scholar

[6] K. Gürlebeck, K. Habetha and W. Sprößig, Holomorphic Functions in the Plane and n-Dimensional Space, Birkhäuser, Basel, 2008. Search in Google Scholar

[7] K. Gürlebeck, K. Habetha and W. Sprößig, Application of Holomorphic Functions in two and Higher Dimensions, Birkhäuser/Springer, Cham, 2016. 10.1007/978-3-0348-0964-1Search in Google Scholar

[8] T. Kano and T. Nishida, Sur les ondes de surface de l’eau avec une justification mathématique des équations des ondes en eau peu profonde, J. Math. Kyoto Univ. 19 (1979), no. 2, 335–370. 10.1215/kjm/1250522437Search in Google Scholar

[9] M. Kashiwara, Systems of Microdifferential Equations, Progr. Math. missing34, Birkhäuser, Boston, 1983. Search in Google Scholar

[10] H. R. Malonek, D. Peña Peña and F. Sommen, A Cauchy–Kowalevski theorem for inframonogenic functions, Math. J. Okayama Univ. 53 (2011), 167–172. Search in Google Scholar

[11] A. Moreno García, T. Moreno García, R. Abreu Blaya and J. Bory Reyes, Inframonogenic functions and their applications in 3-dimensional elasticity theory, Math. Methods Appl. Sci. 41 (2018), no. 10, 3622–3631. 10.1002/mma.4850Search in Google Scholar

[12] K. Nono and Y. Inenaga, On the Clifford linearization of Laplacian, J. Indian Inst. Sci. 67 (1987), no. 5–6, 203–208. 10.4000/books.contrechamps.1643Search in Google Scholar

[13] M. Shapiro, On the conjugate harmonic functions of M. Riesz–E. Stein–G. Weiss, Topics in Complex Analysis, Differential Geometry and Mathematical Physics (St. Konstantin 1996), World Science, River Edge (1997), 8–32. Search in Google Scholar

[14] C. Sulem, P.-L. Sulem, C. Bardos and U. Frisch, Finite time analyticity for the two- and three-dimensional Kelvin–Helmholtz instability, Comm. Math. Phys. 80 (1981), no. 4, 485–516. 10.1007/BF01941659Search in Google Scholar

Received: 2024-10-02
Accepted: 2025-03-13
Published Online: 2025-05-29

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2025-2035/pdf
Scroll to top button