Home Tilting pairs and Wakamatsu tilting subcategories over triangular matrix algebras
Article
Licensed
Unlicensed Requires Authentication

Tilting pairs and Wakamatsu tilting subcategories over triangular matrix algebras

  • Yafeng Zhang , Yajun Ma and Tiwei Zhao EMAIL logo
Published/Copyright: March 29, 2023
Become an author with De Gruyter Brill

Abstract

Let A and B be Artin algebras and let M be an ( A , B ) -bimodule with M A and M B finitely generated. In this paper, we construct tilting pairs of subcategories and Wakamatsu tilting subcategories over an upper triangular matrix Artin algebra Ξ› = ( A M 0 B ) using tilting pairs and Wakamatsu tiling subcategories over A and B. Let π’ž be a subcategory of A ⁒ -mod and let π’Ÿ be a subcategory of B ⁒ -mod . Consider the subcategory of left Ξ›-modules 𝔅 π’Ÿ π’ž = { ( X Y ) f : f Β is a monomorphism,Β  Y ∈ π’Ÿ Β andΒ  Coker ⁑ f ∈ π’ž } . We prove the following results: (1) Assume that M βŠ— B 𝒯 β€² βŠ† 𝒯 , M βŠ— B π’ž β€² βŠ† π’ž and Tor i B ⁒ ( M , 𝒯 β€² ) = 0 for all i β‰₯ 1 . Then ( π’ž , 𝒯 ) and ( π’ž β€² , 𝒯 β€² ) are n-tilting pairs respectively in A ⁒ - ⁒ mod and B ⁒ - ⁒ mod if and only if ( 𝔅 π’ž β€² π’ž , 𝔅 𝒯 β€² 𝒯 ) is an n-tilting pair in Ξ› ⁒ - ⁒ mod . (2) Assume that M βŠ— B 𝒱 βŠ† 𝒲 and Tor i B ⁒ ( M , 𝒱 βŠ₯ ) = 0 for all i β‰₯ 1 . If 𝒲 and 𝒱 are Wakamatsu tilting subcategories respectively in A ⁒ - ⁒ mod and B ⁒ - ⁒ mod , then 𝔅 𝒱 𝒲 is a Wakamatsu tilting subcategory in Ξ› ⁒ - ⁒ mod .

MSC 2010: 16S70; 16E05; 16G10

Award Identifier / Grant number: 11901341

Award Identifier / Grant number: 11971225

Funding statement: This work was partially supported by NSFC (No. 11901341, No. 11971225), and the project of Youth Innovation Team of Universities of Shandong Province (No. 2022KJ314).

References

[1] M. Auslander and I. Reiten, Applications of contravariantly finite subcategories, Adv. Math. 86 (1991), no. 1, 111–152. 10.1016/0001-8708(91)90037-8Search in Google Scholar

[2] M. Auslander, I. Reiten and S. O. SmalΓΈ, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge University, Cambridge, 1995. 10.1017/CBO9780511623608Search in Google Scholar

[3] S. Brenner and M. C. R. Butler, Generalizations of the Bernstein–Gel’fand–Ponomarev reflection functors, Representation Theory. II (Ottawa1979), Lecture Notes in Math. 832, Springer, Berlin (1980), 103–169. 10.1007/BFb0088461Search in Google Scholar

[4] R. R. Colby and K. R. Fuller, Tilting, cotilting, and serially tilted rings, Comm. Algebra 18 (1990), no. 5, 1585–1615. 10.1080/00927879008823985Search in Google Scholar

[5] H. Enomoto, Classifying exact categories via Wakamatsu tilting, J. Algebra 485 (2017), 1–44. 10.1016/j.jalgebra.2017.04.024Search in Google Scholar

[6] H. Gao and Z. Huang, Silting modules over triangular matrix rings, Taiwanese J. Math. 24 (2020), no. 6, 1417–1437. 10.11650/tjm/200204Search in Google Scholar

[7] N. Gao and P. Zhang, Strongly Gorenstein projective modules over upper triangular matrix Artin algebras, Comm. Algebra 37 (2009), no. 12, 4259–4268. 10.1080/00927870902828934Search in Google Scholar

[8] E. L. Green, On the representation theory of rings in matrix form, Pacific J. Math. 100 (1982), no. 1, 123–138. 10.2140/pjm.1982.100.123Search in Google Scholar

[9] A. Haghany and K. Varadarajan, Study of formal triangular matrix rings, Comm. Algebra 27 (1999), no. 11, 5507–5525. 10.1080/00927879908826770Search in Google Scholar

[10] A. Haghany and K. Varadarajan, Study of modules over formal triangular matrix rings, J. Pure Appl. Algebra 147 (2000), no. 1, 41–58. 10.1016/S0022-4049(98)00129-7Search in Google Scholar

[11] D. Happel, Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge University, Cambridge, 1988. 10.1017/CBO9780511629228Search in Google Scholar

[12] H. Li, Y. Zheng, J. Hu and H. Zhu, Gorenstein projective modules and recollements over triangular matrix rings, Comm. Algebra 48 (2020), no. 11, 4932–4947. 10.1080/00927872.2020.1775240Search in Google Scholar

[13] D. Liu and J. Wei, Tilting pair over split-by-nilpotent extensions, J. Algebra Appl. 21 (2022), no. 1, Paper No. 2250019. 10.1142/S0219498822500190Search in Google Scholar

[14] M. Lu, Gorenstein defect categories of triangular matrix algebras, J. Algebra 480 (2017), 346–367. 10.1016/j.jalgebra.2017.03.008Search in Google Scholar

[15] L. Mao, Cotorsion pairs and approximation classes over formal triangular matrix rings, J. Pure Appl. Algebra 224 (2020), no. 6, Paper No. 106271. 10.1016/j.jpaa.2019.106271Search in Google Scholar

[16] L. Mao, Duality pairs and FP-injective modules over formal triangular matrix rings, Comm. Algebra 48 (2020), no. 12, 5296–5310. 10.1080/00927872.2020.1786837Search in Google Scholar

[17] L. Mao, Gorenstein flat modules and dimensions over formal triangular matrix rings, J. Pure Appl. Algebra 224 (2020), no. 4, Paper No. 106207. 10.1016/j.jpaa.2019.106207Search in Google Scholar

[18] L. Mao, Admissible balanced pairs over formal triangular matrix rings, Bull. Korean Math. Soc. 58 (2021), no. 6, 1387–1400. Search in Google Scholar

[19] L. Mao, Homological dimensions of special modules over formal triangular matrix rings, J. Algebra Appl. 21 (2022), no. 7, Paper No. 2250146. 10.1142/S0219498822501468Search in Google Scholar

[20] Y. Miyashita, Tilting modules of finite projective dimension, Math. Z. 193 (1986), no. 1, 113–146. 10.1007/BF01163359Search in Google Scholar

[21] Y. Miyashita, Tilting modules associated with a series of idempotent ideals, J. Algebra 238 (2001), no. 2, 485–501. 10.1006/jabr.2000.8659Search in Google Scholar

[22] Y. Peng, X. Ma and Z. Huang, Ο„-Tilting modules over triangular matrix artin algebras, Internat. J. Algebra Comput. 31 (2021), no. 4, 639–661. 10.1142/S0218196721500314Search in Google Scholar

[23] S. O. SmalΓΈ, Functorial finite subcategories over triangular matrix rings, Proc. Amer. Math. Soc. 111 (1991), no. 3, 651–656. 10.2307/2048401Search in Google Scholar

[24] T. Wakamatsu, On modules with trivial self-extensions, J. Algebra 114 (1988), no. 1, 106–114. 10.1016/0021-8693(88)90215-3Search in Google Scholar

[25] J. Wei and C. Xi, A characterization of the tilting pair, J. Algebra 317 (2007), no. 1, 376–391. 10.1016/j.jalgebra.2007.05.003Search in Google Scholar

[26] J. Wei and C. Xi, Auslander-Reiten correspondence for tilting pairs, J. Pure Appl. Algebra 212 (2008), no. 2, 411–422. 10.1016/j.jpaa.2007.06.006Search in Google Scholar

[27] B.-L. Xiong, P. Zhang and Y.-H. Zhang, Bimodule monomorphism categories and RSS equivalences via cotilting modules, J. Algebra 503 (2018), 21–55. 10.1016/j.jalgebra.2018.01.038Search in Google Scholar

[28] P. Zhang, Gorenstein-projective modules and symmetric recollements, J. Algebra 388 (2013), 65–80. 10.1016/j.jalgebra.2013.05.008Search in Google Scholar

[29] T. Zhao, B. Zhu and X. Zhuang, Tilting pairs in extriangulated categories, Proc. Edinb. Math. Soc. (2) 64 (2021), no. 4, 947–981. 10.1017/S0013091521000717Search in Google Scholar

[30] J. Zheng and H. Gao, The extension dimension of triangular matrix algebras, Linear Algebra Appl. 624 (2021), 44–52. 10.1016/j.laa.2021.04.002Search in Google Scholar

Received: 2022-09-01
Accepted: 2023-01-20
Published Online: 2023-03-29
Published in Print: 2023-06-01

Β© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2023-2013/pdf
Scroll to top button