Home The triharmonic equation on the Heisenberg group
Article
Licensed
Unlicensed Requires Authentication

The triharmonic equation on the Heisenberg group

  • Majid Izadjoo and Mojgan Akbari EMAIL logo
Published/Copyright: February 23, 2023
Become an author with De Gruyter Brill

Abstract

Consider the equation

{ - Δ H 3 u = f ( ξ , u , H u , H 2 u , H 3 u , H 4 u , H 5 u ) in  Ω , u > 0 in  Ω , u = ν ( H 2 u ) = ν ( H 3 u ) = 0 on  Ω ,

where Ω is a domain of the finite-dimensional space n and f is a positive and bounded function. We prove the existence of a solution for the above equation. In addition, we prove the uniqueness and the cylindrical symmetry of the solution.

MSC 2010: 31B30; 35H20; 35R03

References

[1] A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer Monogr. Math., Springer, Berlin, 2007. Search in Google Scholar

[2] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. 10.1007/BF02392081Search in Google Scholar

[3] D. Jerison and J. M. Lee, Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J. Amer. Math. Soc. 1 (1988), no. 1, 1–13. 10.1090/S0894-0347-1988-0924699-9Search in Google Scholar

[4] B. Kaushik, Uniqueness of positive solution for a quasilinear elliptic equation in Heisenberg group, preprint (2015), https://arxiv.org/abs/1512.02825 Search in Google Scholar

[5] A. Kolmogoroff, Zufällige Bewegungen (zur Theorie der Brownschen Bewegung), Ann. of Math. (2) 35 (1934), no. 1, 116–117. 10.2307/1968123Search in Google Scholar

[6] M. Picone, Teoremi di unicità nei problemi dei valori al contorno per le equazioni ellittiche e paraboliche (Italian), Rom. Acc. L. Rend. 22 (1913), no. 2, 275–282. Search in Google Scholar

[7] M. Picone, Maggiorazione degli integrali delle equazioni lineari ellittico-paraboliche alle derivate parziali del second’ordine (Italian), Rend. Accad. Naz. Lincei 5 (1927), 138–143. Search in Google Scholar

[8] M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Berlin, 1990. Search in Google Scholar

Received: 2022-01-31
Revised: 2022-12-04
Accepted: 2022-12-14
Published Online: 2023-02-23
Published in Print: 2023-06-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2023-2012/pdf
Scroll to top button