Home Square-free values of n 2 + n + 1
Article
Licensed
Unlicensed Requires Authentication

Square-free values of n 2 + n + 1

  • Stoyan Ivanov Dimitrov EMAIL logo
Published/Copyright: February 23, 2023
Become an author with De Gruyter Brill

Abstract

In this paper we show that there exist infinitely many square-free numbers of the form n 2 + n + 1 . We achieve this by deriving an asymptotic formula by improving the reminder term from previous results.

MSC 2010: 11L05; 11N25; 11N3

References

[1] T. D. Browning, Power-free values of polynomials, Arch. Math. (Basel) 96 (2011), no. 2, 139–150. 10.1007/s00013-011-0224-7Search in Google Scholar

[2] P. Erdös, Arithmetical properties of polynomials, J. Lond. Math. Soc. 28 (1953), 416–425. 10.1112/jlms/s1-28.4.416Search in Google Scholar

[3] T. Estermann, Einige Sätze über quadratfreie Zahlen, Math. Ann. 105 (1931), no. 1, 653–662. 10.1007/BF01455836Search in Google Scholar

[4] D. R. Heath-Brown, Counting rational points on algebraic varieties, Analytic Number Theory, Lecture Notes in Math. 1891, Springer, Berlin (2006), 51–95. 10.1007/978-3-540-36364-4_2Search in Google Scholar

[5] D. R. Heath-Brown, Square-free values of n 2 + 1 , Acta Arith. 155 (2012), no. 1, 1–13. 10.4064/aa155-1-1Search in Google Scholar

[6] D. R. Heath-Brown, Power-free values of polynomials, Q. J. Math. 64 (2013), no. 1, 177–188. 10.1093/qmath/har030Search in Google Scholar

[7] C. Hooley, On the power free values of polynomials, Mathematika 14 (1967), 21–26. 10.1112/S002557930000797XSearch in Google Scholar

[8] H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc. Colloq. Publ. 53, American Mathematical Society, Providence, 2004. 10.1090/coll/053Search in Google Scholar

[9] M. Nair, Power free values of polynomials, Mathematika 23 (1976), no. 2, 159–183. 10.1112/S0025579300008779Search in Google Scholar

[10] T. Reuss, Power-free values of polynomials, Bull. Lond. Math. Soc. 47 (2015), no. 2, 270–284. 10.1112/blms/bdu116Search in Google Scholar

[11] G. Ricci, Riecenche aritmetiche sui polynomials, Rend. Circ. Mat. Palermo 57 (1933), 433–475. 10.1007/BF03017586Search in Google Scholar

[12] D. I. Tolev, On the exponential sum with square-free numbers, Bull. Lond. Math. Soc. 37 (2005), no. 6, 827–834. 10.1112/S0024609305004753Search in Google Scholar

Received: 2022-05-05
Accepted: 2022-09-07
Published Online: 2023-02-23
Published in Print: 2023-06-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2023-2010/pdf
Scroll to top button