Home On classifying map of the integral Krichever–Hoehn formal group law
Article
Licensed
Unlicensed Requires Authentication

On classifying map of the integral Krichever–Hoehn formal group law

  • Malkhaz Bakuradze EMAIL logo and Alexander Gamkrelidze
Published/Copyright: October 28, 2022
Become an author with De Gruyter Brill

Abstract

The classifying map of the integral Krichever–Hoehn formal group law is presented as a quotient map of the Lazard ring by some explicit ideal.

MSC 2010: 55N22; 55N35

References

[1] M. Bakuradze, The formal groups of Bukhshtaber, Krichever, and Nadiradze coincide (in Russian), Uspekhi Mat. Nauk 68 (2013), no. 3(411), 189–190; translation in Russian Math. Surveys 68 (2013), no. 3, 571–573. Search in Google Scholar

[2] M. Bakuradze, Computing the Krichever genus, J. Homotopy Relat. Struct. 9 (2014), no. 1, 85–93. 10.1007/s40062-013-0049-0Search in Google Scholar

[3] M. Bakuradze, On the Buchstaber formal group law and some related genera (in Russian), Tr. Mat. Inst. Steklova 286 (2014),7–21; translation in Proc. Steklov Inst. Math. 286 (2014), no. 1, 1–15. 10.1134/S0081543814060017Search in Google Scholar

[4] V. Buchstaber, T. Panov and N. Ray, Toric genera, Int. Math. Res. Not. IMRN 2010 (2010), no. 16, 3207–3262. 10.1093/imrn/rnp228Search in Google Scholar

[5] V. M. Bukhshtaber and A. V. Ustinov, Coefficient rings of formal groups (in Russian), Mat. Sb. 206 (2015), no. 11, 19–60; translation in Sb. Math. 206 (2015), no. 11–12, 1524–1563. Search in Google Scholar

[6] E. Y. Bunkova, V. M. Bukhshtaber and A. V. Ustinov, Coefficient rings of Tate formal groups determining Krichever genera (in Russian), Tr. Mat. Inst. Steklova 292 (2016), 43–68; translation in Proc. Steklov Inst. Math. 292 (2016), no. 1, 37–62. 10.1134/S0081543816010041Search in Google Scholar

[7] M. Hazewinkel, Formal Groups and Applications, Pure Appl. Math. 78, Academic Press, New York, 1978. Search in Google Scholar

[8] G. Höhn, Komplexe elliptische Geschlechter und S 1 -aequivariante Kobordismustheorie, preprint (2004), https://arxiv.org/abs/math/0405232. Search in Google Scholar

[9] I. M. Krichever, Generalized elliptic genera and Baker–Akhiezer functions (in Russian), Mat. Zametki 47 (1990), no. 2, 34–45; translation in Math. Notes 47 (1990), no. 1–2, 132–142. 10.1007/BF01156822Search in Google Scholar

[10] S. P. Novikov, Methods of algebraic topology from the point of view of cobordism theory (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 855–951; translation in Math. USSR-Izv. 31 (1967), no. 4, 827–913. Search in Google Scholar

[11] S. Ochanine, Sur les genres multiplicatifs définis par des intégrales elliptiques, Topology 26 (1987), no. 2, 143–151. 10.1016/0040-9383(87)90055-3Search in Google Scholar

[12] D. Quillen, On the formal group laws of unoriented and complex cobordism theory, Bull. Amer. Math. Soc. 75 (1969), 1293–1298. 10.1142/9789812772107_0006Search in Google Scholar

[13] S. Schreieder, Dualization invariance and a new complex elliptic genus, J. Reine Angew. Math. 692 (2014), 77–108. 10.1515/crelle-2012-0085Search in Google Scholar

[14] B. Totaro, Chern numbers for singular varieties and elliptic homology, Ann. of Math. (2) 151 (2000), no. 2, 757–791. 10.2307/121047Search in Google Scholar

Received: 2022-02-07
Revised: 2022-04-04
Accepted: 2022-05-05
Published Online: 2022-10-28
Published in Print: 2023-02-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2022-2199/pdf
Scroll to top button