Home BiHom-pre-Lie algebras, BiHom-Leibniz algebras and Rota–Baxter operators on BiHom-Lie algebras
Article
Licensed
Unlicensed Requires Authentication

BiHom-pre-Lie algebras, BiHom-Leibniz algebras and Rota–Baxter operators on BiHom-Lie algebras

  • Ling Liu , Abdenacer Makhlouf EMAIL logo , Claudia Menini and Florin Panaite
Published/Copyright: July 1, 2021
Become an author with De Gruyter Brill

Abstract

We contribute to the study of Rota–Baxter operators on types of algebras other than associative and Lie algebras. If A is an algebra of a certain type and R is a Rota–Baxter operator on A, one can define a new multiplication on A by means of R and the previous multiplication and ask under what circumstances the new algebra is of the same type as A. Our first main result deals with such a situation in the case of BiHom-Lie algebras. Our second main result is a BiHom analogue of Aguiar’s theorem that shows how to obtain a pre-Lie algebra from a Rota–Baxter operator of weight zero on a Lie algebra. The BiHom analogue does not work for BiHom-Lie algebras, but for a new concept we introduce here, called left BiHom-Lie algebra, at which we arrived by defining first the BiHom version of Leibniz algebras.

MSC 2010: 15A04; 17A99; 17D99

Award Identifier / Grant number: 11801515

Award Identifier / Grant number: 11601486

Funding statement: This paper was written while Ling Liu was visiting the Institute of Mathematics of the Romanian Academy (IMAR), supported by the NSF of China (Grant Nos. 11801515, 11601486). Claudia Menini was a member of the National Group for Algebraic and Geometric Structures, and their Applications (GNSAGA-INdAM). This paper was partially supported by MIUR within the National Research Project PRIN (Grant No. 2017/201789N23_5002).

Acknowledgements

Ling Liu would like to thank IMAR for hospitality.

References

[1] H. Adimi, T. Chtioui, S. Mabrouk and S. Massoud, Construction of BiHom-post-Lie algebras, preprint (2020), http://arxiv.org/abs/2001.02308v1. Search in Google Scholar

[2] M. Aguiar, Pre-Poisson algebras, Lett. Math. Phys. 54 (2000), no. 4, 263–277. 10.1023/A:1010818119040Search in Google Scholar

[3] N. Aizawa and H. Sato, q-deformation of the Virasoro algebra with central extension, Phys. Lett. B 256 (1991), no. 2, 185–190. 10.1016/0370-2693(91)90671-CSearch in Google Scholar

[4] C. Bai, L. Guo and X. Ni, Nonabelian generalized Lax pairs, the classical Yang–Baxter equation and PostLie algebras, Comm. Math. Phys. 297 (2010), no. 2, 553–596. 10.1007/s00220-010-0998-7Search in Google Scholar

[5] G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math. 10 (1960), 731–742. 10.2140/pjm.1960.10.731Search in Google Scholar

[6] A. A. Belavin and V. G. Drinfel’d, Solutions of the classical Yang-Baxter equation for simple Lie algebras, Funktsional. Anal. i Prilozhen. 16 (1982), no. 3, 1–29; translation in Funct. Anal. Appl. 16 (1982), 159–180. 10.1142/9789812798336_0008Search in Google Scholar

[7] S. Caenepeel and I. Goyvaerts, Monoidal Hom–Hopf algebras, Comm. Algebra 39 (2011), no. 6, 2216–2240. 10.1080/00927872.2010.490800Search in Google Scholar

[8] A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys. 199 (1998), no. 1, 203–242. 10.1007/978-94-011-4542-8_4Search in Google Scholar

[9] G. Graziani, A. Makhlouf, C. Menini and F. Panaite, BiHom-associative algebras, BiHom-Lie algebras and BiHom-bialgebras, SIGMA Symmetry Integrability Geom. Methods Appl. 11 (2015), Paper 86. 10.3842/SIGMA.2015.086Search in Google Scholar

[10] L. Guo, An Introduction to Rota–Baxter Algebra, Surv. Mod. Math. 4, International Press, Somerville, 2012. Search in Google Scholar

[11] J. T. Hartwig, D. Larsson and S. D. Silvestrov, Deformations of Lie algebras using σ-derivations, J. Algebra 295 (2006), no. 2, 314–361. 10.1016/j.jalgebra.2005.07.036Search in Google Scholar

[12] N. Hu, q-Witt algebras, q-Lie algebras, q-holomorph structure and representations, Algebra Colloq. 6 (1999), no. 1, 51–70. Search in Google Scholar

[13] D. Larsson and S. D. Silvestrov, Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities, J. Algebra 288 (2005), no. 2, 321–344. 10.1016/j.jalgebra.2005.02.032Search in Google Scholar

[14] L. Liu, A. Makhlouf, C. Menini and F. Panaite, {σ,τ}-Rota–Baxter operators, infinitesimal Hom-bialgebras and the associative (Bi)Hom-Yang–Baxter equation, Canad. Math. Bull. 62 (2019), no. 2, 355–372. 10.4153/CMB-2018-028-8Search in Google Scholar

[15] L. Liu, A. Makhlouf, C. Menini and F. Panaite, BiHom-Novikov algebras and infinitesimal BiHom-bialgebras, J. Algebra 560 (2020), 1146–1172. 10.1016/j.jalgebra.2020.06.012Search in Google Scholar

[16] L. Liu, A. Makhlouf, C. Menini and F. Panaite, Rota–Baxter operators on BiHom-associative algebras and related structures, Colloq. Math. 161 (2020), no. 2, 263–294. 10.4064/cm7877-5-2019Search in Google Scholar

[17] L. Liu, A. Makhlouf, C. Menini and F. Panaite, Tensor products and perturbations of BiHom-Novikov–Poisson algebras, J. Geom. Phys. 161 (2021), Article ID 104026. 10.1016/j.geomphys.2020.104026Search in Google Scholar

[18] J.-L. Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math. (2) 39 (1993), no. 3–4, 269–293. Search in Google Scholar

[19] A. Makhlouf, Hom-dendriform algebras and Rota–Baxter Hom-algebras, Operads and Universal Algebra, Nankai Ser. Pure Appl. Math. Theoret. Phys. 9, World Scientific, Hackensack (2012), 147–171. 10.1142/9789814365123_0008Search in Google Scholar

[20] A. Makhlouf and S. D. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl. 2 (2008), no. 2, 51–64. 10.4303/jglta/S070206Search in Google Scholar

[21] A. Makhlouf and D. Yau, Rota–Baxter Hom–Lie-admissible algebras, Comm. Algebra 42 (2014), no. 3, 1231–1257. 10.1080/00927872.2012.737075Search in Google Scholar

[22] G.-C. Rota, Baxter algebras and combinatorial identities. I, Bull. Amer. Math. Soc. 75 (1969), 325–329. 10.1090/S0002-9904-1969-12156-7Search in Google Scholar

[23] G.-C. Rota, Baxter algebras and combinatorial identities. II, Bull. Amer. Math. Soc. 75 (1969), 330–334. 10.1090/S0002-9904-1969-12158-0Search in Google Scholar

[24] G.-C. Rota, Baxter operators, an introduction, Gian–Carlo Rota on Combinatorics, Contemp. Math., Birkhäuser, Boston (1995), 504–512. Search in Google Scholar

[25] M. A. Semenov-Tyan-Shanskiĭ, What a classical r-matrix is, Funktsional. Anal. i Prilozhen. 17 (1983), no. 4, 17–33; translation in Funct. Anal. Appl 17 (1983), 259–272. 10.1142/9789812798336_0010Search in Google Scholar

[26] B. Vallette, Homology of generalized partition posets, J. Pure Appl. Algebra 208 (2007), no. 2, 699–725. 10.1016/j.jpaa.2006.03.012Search in Google Scholar

Received: 2020-02-13
Revised: 2020-09-18
Accepted: 2020-09-23
Published Online: 2021-07-01
Published in Print: 2021-08-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2021-2094/html?lang=en
Scroll to top button