Home Some inequalities for the numerical radius for Hilbert C*-modules space operators
Article
Licensed
Unlicensed Requires Authentication

Some inequalities for the numerical radius for Hilbert C*-modules space operators

  • Mohsen Shah Hosseini , Mohsen Erfanian Omidvar ORCID logo EMAIL logo , Baharak Moosavi and Hamid Reza Moradi ORCID logo
Published/Copyright: October 16, 2019
Become an author with De Gruyter Brill

Abstract

We extend some numerical radius inequalities for adjointable operators on Hilbert C*-modules. A new refinement of a numerical radius inequality for some Hilbert space operators is given. More precisely, we prove that if T() is an invertible operator, then

T2T2+1T-122ω(T).

References

[1] S. S. Dragomir, Reverse inequalities for the numerical radius of linear operators in Hilbert spaces, Bull. Aust. Math. Soc. 73 (2006), no. 2, 255–262. 10.1017/S0004972700038831Search in Google Scholar

[2] S. S. Dragomir, Some inequalities for the norm and the numerical radius of linear operators in Hilbert spaces, Tamkang J. Math. 39 (2008), no. 1, 1–7. 10.5556/j.tkjm.39.2008.40Search in Google Scholar

[3] K. E. Gustafson and D. K. M. Rao, Numerical Range. The Field of Values of Linear Operators and Matrices, Universitext, Springer, New York, 1997. 10.1007/978-1-4613-8498-4_1Search in Google Scholar

[4] J. A. R. Holbrook, Multiplicative properties of the numerical radius in operator theory, J. Reine Angew. Math. 237 (1969), 166–174. 10.1515/crll.1969.237.166Search in Google Scholar

[5] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math. 168 (2005), no. 1, 73–80. 10.4064/sm168-1-5Search in Google Scholar

[6] S. Omran and A. El-S. Ahmed, Numerical radius of operators on Hilbert modules, J. Adv. Stud. Topol. 7 (2016), no. 2, 79–83. 10.20454/jast.2016.1054Search in Google Scholar

Received: 2017-04-21
Revised: 2017-08-08
Accepted: 2017-08-28
Published Online: 2019-10-16
Published in Print: 2021-04-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2019-2053/html?lang=en
Scroll to top button